Let $\hat{A}_n$ be the completion by the degree of a differential operator of the $n$-th Weyl algebra with generators $x_1,\ldots,x_n,\partial^1,\ldots,\partial^n$. Consider $n$ elements $X_1,\ldots,X_n$ in $\hat{A}_n$ of the form $$ X_i = x_i + \sum_{K = 1}^\infty \sum_{l = 1}^n\sum_{j = 1}^n x_l\, p_{ij}^{K-1,l}(\partial)\partial^j, $$ where $p^{K-1,l}_{ij}(\partial)$ is a degree $(K-1)$ homogeneous polynomial in $\partial^1,\ldots,\partial^n$, antisymmetric in subscripts $i,j$. Then for any natural $k$ and any function $i \colon \{1,\ldots,k\}\to\{1,\ldots,n\}$ we prove $$ \sum_{\sigma \in \Sigma(k)} X_{i_{\sigma(1)}}\cdots X_{i_{\sigma(k)}}\triangleright 1 = k! \,x_{i_1}\cdots x_{i_k}, $$ where $\Sigma(k)$ is the symmetric group on $k$ letters and $\triangleright$ denotes the Fock action of the $\hat{A}_n$ on the space of (commutative) polynomials.
A note on symmetric orderings | 579.2KB |