Triangle inequality for quantum integral operator

Andrea Aglić Aljinović, Ilko Brnetić, Ana Žgaljić Keko

Abstract

We show that general integral triangle inequality does not hold for shifted q-integrals. Furthermore, we obtain a triangle inequality for shifted q integrals. We also give an estimate for q-integrable product and use it to refine some recently obtained Ostrowski inequalities for quantum calculus.

Keywords: q-derivative, q-integral, integral triangle inequality, Ostrowski inequality
2010 Math. Subj. Class.: 26D10, 26D15, 05A30

1 Introduction

Quantum calculus is a calculus that does not use the concept of the limit, as it is based on finite differences. Herein, we will consider a branch of quantum calculus called q-calculus. Basic notions in this type of calculus, q-derivative and q-integral, were introduced by F.H.Jackson 4]. In this work we focus our attention on shifted q-derivative and q-integral.

This manuscript is organized as follows, in Section 2 we give q-calculus preliminaries, we state basic definitions and properties for shifted q derivatives and shifted q-integrals known from the literature [10. Afterwards, in Section 3 we show by counterexamples that for $f:[a, x] \rightarrow \mathbb{R}$ that is q-integrable, the triangle inequality in general does not hold for
every $c \in[a, x]$:

$$
\begin{equation*}
\left|\int_{c}^{x} f(t) d_{q}^{a} t\right| \nsubseteq \int_{c}^{x}|f(t)| d_{q}^{a} t \quad(a \leq c \leq x<+\infty) . \tag{1}
\end{equation*}
$$

However, when c is on the q-lattice, which means that it is of the form $c=a+q^{m}(x-a)$, fore some $m \in \mathbb{N}_{0}$, we show that triangle inequality holds. In Section 4 we give an estimate for the q-integrable product, also valid only when the lower bound of the q-integral is on the q-lattice. We will use this estimate, together with obtained triangle inequality from Section 3 to finally show, in Section 5 refinements of recently obtained Ostrowski inequalities (see [8]).

2 Shifted q-derivative and q-integral

Let $q \in\langle 0,1\rangle$. The shifted q-derivative of an arbitrary function f : $[a, b] \rightarrow \mathbb{R}$ is defined by (see [10])

$$
\begin{aligned}
D_{q}^{a} f(x) & =\frac{f(x)-f(a+q(x-a))}{(1-q)(x-a)}, \quad x \in\langle a, b] \\
D_{q}^{a} f(a) & =\lim _{x \rightarrow a} D_{q}^{a} f(x)
\end{aligned}
$$

Note that every such function is q-differentiable for every $x \in\langle a, b]$ and, if $\lim _{x \rightarrow a} D_{q}^{a} f(x)$ exists, it is q-differentiable on $[a, b]$. The shifted q-derivative is a generalization of the Euler-Jackson q-difference operator (see (4) and both are discretizations of ordinary derivative, and if f is differentiable function then

$$
\lim _{q \rightarrow 1} D_{q}^{a} f(x)=f^{\prime}(x)
$$

Shifted q-integral (a generalization of Jackson integral) is defined by

$$
\begin{equation*}
\int_{a}^{x} f(t) d_{q}^{a} t=(1-q)(x-a) \sum_{k=0}^{\infty} q^{k} f\left(a+q^{k}(x-a)\right), \quad x \in[a, b] . \tag{2}
\end{equation*}
$$

If the series on the right hand-side converges, then q-integral $\int_{a}^{x} f(t) d_{q}^{a} t$ exists. If f is continuous function on $[a, b]$, the series

$$
(1-q)(x-a) \sum_{k=0}^{\infty} q^{k} f\left(a+q^{k}(x-a)\right)
$$

tends to the Riemann integral when $q \rightarrow 1$ ([3], [6]):

$$
\lim _{q \rightarrow 1} \int_{a}^{x} f(t) d_{q}^{a} t=\int_{a}^{x} f(t) d t
$$

The shifted q-integral is a generalization of the Jackson q-integral (see [5]). If $c \in\langle a, x\rangle$ shifted q-integral is defined by

$$
\begin{equation*}
\int_{c}^{x} f(t) d_{q}^{a} t=\int_{a}^{x} f(t) d_{q}^{a} t-\int_{a}^{c} f(t) d_{q}^{a} t \tag{3}
\end{equation*}
$$

In the following theorem important properties of shifted q-derivatives and q-integrals are given (see [10]).

Theorem 1. For a function $f:[a, b] \rightarrow \mathbb{R}, q \in\langle 0,1\rangle$ and $x \in[a, b]$, the following identities hold:
(i)

$$
D_{q}^{a}\left(\int_{a}^{x} f(t) d_{q}^{a} t\right)=f(x)
$$

(ii)

$$
\int_{a}^{x} D_{q}^{a} f(t) d_{q}^{a} t=f(x)-f(a)
$$

(iii)

$$
\int_{a}^{x}(f(t)+g(t)) d_{q}^{a} t=\int_{a}^{x} f(t) d_{q}^{a} t+\int_{a}^{x} g(t) d_{q}^{a} t
$$

(iv)

$$
\int_{a}^{x} \alpha f(t) d_{q}^{a} t=\alpha \int_{a}^{x} f(t) d_{q}^{a} t, \alpha \in \mathbb{R}
$$

In the next section we will show that general integral triangle inequality does not hold for shifted q-integrals, as stated in (1). Furthermore, we will show that triangle inequality for shifted q-integrals is valid when lower integral bound is a point of the q-lattice.

3 Triangle inequality for shifted q-integrals

In [3, (Section 1.3.1, Remark (ii)) an example of a function is given for which the triangle inequality for q-integral (Jackson integral) does not hold. Following this example, here we give an example of a function for which the triangle inequality for shifted q-integrals does not hold.

Example 1. Let us consider the function $f:[a, b] \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}\frac{4 q^{-n}(x-a)-(1+3 q)(b-a)}{(1-q)(b-a)^{2}}, & a+q^{n+1}(b-a) \leq x \leq a+\frac{q^{n}(q+1)}{2}(b-a), \\ \frac{4\left(-q^{-n}(x-a)+(b-a)\right)}{(1-q)(b-a)^{2}}, & a+\frac{q^{n}(q+1)}{2}(b-a)<x \leq a+q^{n}(b-a), \\ 0, & x=a .\end{cases}
$$

where $n \in \mathbb{N}_{0}$. This function is visualized in Figure 1 .

Figure 1: The function $f(x)$ on $[0.2,3.0]$ when $q=0.6$

It easily follows that the function f is continuous. Furthermore, at the points of q-lattice it attains the value $-\frac{1}{b-a}$, while in the midpoints of q-lattice it attains the value $\frac{1}{b-a}$:

$$
f\left(a+q^{n}(b-a)\right)=-\frac{1}{b-a}, \quad n \in \mathbb{N}
$$

and

$$
f\left(a+\frac{q^{n}(q+1)}{2}(b-a)\right)=\frac{1}{b-a}, \quad n \in \mathbb{N} .
$$

In order to show that triangle inequality is not valid we calculate the following q-integral:

$$
\begin{aligned}
& \int_{a+\frac{q+1}{2}(b-a)}^{b} f(t) d_{q}^{a} t=\int_{a}^{b} f(t) d_{q}^{a} t-\int_{a}^{a+\frac{q+1}{2}(b-a)} f(t) d_{q}^{a} t \\
= & (1-q)(b-a) \sum_{k=0}^{\infty} q^{k} f\left(a+q^{k}(b-a)\right) \\
- & (1-q)(b-a) \frac{1}{2}(q+1) \sum_{k=0}^{\infty} q^{k} f\left(a+\frac{q^{k}(q+1)}{2}(b-a)\right) \\
= & (1-q)(b-a)\left(\sum_{k=0}^{\infty} q^{k}\left(-\frac{1}{b-a}\right)-\frac{1}{2}(q+1) \sum_{k=0}^{\infty} q^{k}\left(\frac{1}{b-a}\right)\right) \\
= & -1-\frac{1}{2}(q+1)=-\frac{q+3}{2}
\end{aligned}
$$

and we obtain

$$
\left|\int_{a+\frac{q+1}{2}(b-a)}^{b} f(t) d_{q}^{a} t\right|=\frac{q+3}{2}
$$

Now, we calculate

$$
\begin{aligned}
& \int_{a+\frac{q+1}{2}(b-a)}^{b}|f(t)| d_{q}^{a} t=\int_{a}^{b}|f(t)| d_{q}^{a} t-\int_{a}^{a+\frac{q+1}{2}(b-a)}|f(t)| d_{q}^{a} t \\
= & (1-q)(b-a) \sum_{k=0}^{\infty} q^{k}\left|f\left(a+q^{k}(b-a)\right)\right| \\
- & (1-q)(b-a) \frac{1}{2}(q+1) \sum_{k=0}^{\infty} q^{k}\left|f\left(a+\frac{q^{k}(q+1)}{2}(b-a)\right)\right| \\
= & (1-q)(b-a)\left(\sum_{k=0}^{\infty} q^{k}\left(\frac{1}{b-a}\right)-\frac{1}{2}(q+1) \sum_{k=0}^{\infty} q^{k}\left(\frac{1}{b-a}\right)\right) \\
= & 1-\frac{1}{2}(q+1)=\frac{1-q}{2}
\end{aligned}
$$

We have shown that

$$
\left|\int_{a+\frac{q+1}{2}(b-a)}^{b} f(t) d_{q}^{a} t\right|>\int_{a+\frac{q+1}{2}(b-a)}^{b}|f(t)| d_{q}^{a} t
$$

and therefore the triangle inequality is not valid in general, for every $c \in[a, b]$, as written in (1).

Example 2. Now we consider the function $f:[a, b] \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
f(x)=\frac{b-x}{b-a}, \quad x \in[a, b] . \tag{4}
\end{equation*}
$$

Using the function (4) we calculate

$$
\begin{aligned}
& \int_{\frac{a+b}{2}}^{b} f(t) d_{q}^{a} t=\int_{a}^{b} f(t) d_{q}^{a} t-\int_{a}^{\frac{a+b}{2}} f(t) d_{q}^{a} t \\
& =(1-q)(b-a)\left(\sum_{k=0}^{\infty} q^{k} f\left(a+q^{k}(b-a)\right)-\frac{1}{2} \sum_{k=0}^{\infty} q^{k} f\left(a+q^{k} \frac{b-a}{2}\right)\right) \\
& =(1-q)(b-a)\left(\sum_{k=0}^{\infty} q^{k}\left(1-q^{k}\right)-\frac{1}{2} \sum_{k=0}^{\infty} q^{k}\left(1-\frac{1}{2} q^{k}\right)\right) \\
& =(b-a)\left(\frac{q}{1+q}-\frac{1+2 q}{4(1+q)}\right)=(b-a) \frac{2 q-1}{4(1+q)}
\end{aligned}
$$

For every $q \in\left\langle 0, \frac{1}{2}\right\rangle$ we have

$$
\left|\int_{\frac{a+b}{2}}^{b} f(t) d_{q}^{a} t\right|=(b-a) \frac{1-2 q}{4(1+q)} .
$$

Let us note that the function (4) is positive, so it follows that

$$
\int_{\frac{a+b}{2}}^{b}|f(t)| d_{q}^{a} t=\int_{\frac{a+b}{2}}^{b} f(t) d_{q}^{a} t=(b-a) \frac{2 q-1}{4(1+q)}<0 .
$$

We have shown once more that the triangle inequality for shifted q integrals generally does not hold as we have obtained

$$
\left|\int_{\frac{a+b}{2}}^{b} f(t) d_{q}^{a} t\right|=(b-a) \frac{1-2 q}{4(1+q)}>-(b-a) \frac{1-2 q}{4(1+q)}=\int_{\frac{a+b}{2}}^{b}|f(t)| d_{q}^{a} t .
$$

Now, we will show that the triangle inequality is valid when lower bound of the q-integral is on the q-lattice. In the next lemma the triangle inequality for shifted q-integrals is given.

Lemma 1. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $|f|$ is a q-integrable function on $[a, b]$. Then for every $x \in\langle a, b]$ and $m \in \mathbb{N}_{0}$, the following inequality holds

$$
\begin{equation*}
\left|\int_{a+q^{m}(x-a)}^{x} f(t) d_{q}^{a} t\right| \leq \int_{a+q^{m}(x-a)}^{x}|f(t)| d_{q}^{a} t \tag{5}
\end{equation*}
$$

Proof. From the definitions (2) and (3) we have

$$
\begin{aligned}
& \left|\int_{a+q^{m}(x-a)}^{x} f(t) d_{q}^{a} t\right|=\left|\int_{a}^{x} f(t) d_{q}^{a} t-\int_{a}^{a+q^{m}(x-a)} f(t) d_{q}^{a} t\right| \\
& =\mid(1-q)(x-a) \sum_{k=0}^{\infty} q^{k} f\left(a+q^{k}(x-a)\right) \\
& -(1-q)\left(q^{m}(x-a)\right) \sum_{k=0}^{\infty} q^{k} f\left(a+q^{k+m}(x-a)\right) \mid \\
& =\left|(1-q)(x-a) \sum_{k=0}^{m-1} q^{k} f\left(a+q^{k}(x-a)\right)\right| .
\end{aligned}
$$

Now we use the discrete triangle inequality for finite sequence to obtain

$$
\begin{aligned}
& \left|(1-q)(x-a) \sum_{k=0}^{m-1} q^{k} f\left(a+q^{k}(x-a)\right)\right| \\
& \leq(1-q)(x-a) \sum_{k=0}^{m-1} q^{k}\left|f\left(a+q^{k}(x-a)\right)\right| \\
& =(1-q)(x-a) \sum_{k=0}^{\infty} q^{k}\left|f\left(a+q^{k}(x-a)\right)\right| \\
& -(1-q)\left(q^{m}(x-a)\right) \sum_{k=0}^{\infty} q^{k}\left|f\left(a+q^{k+m}(x-a)\right)\right| \\
& =\int_{a}^{x}|f(t)| d_{q}^{a} t-\int_{a}^{a+q^{m}(x-a)}|f(t)| d_{q}^{a} t=\int_{a+q^{m}(x-a)}^{x}|f(t)| d_{q}^{a} t .
\end{aligned}
$$

Remark 1. If we take $m=0$ in (5) we obtain that for every $x \in\langle a, b]$

$$
\left|\int_{a}^{x} f(t) d_{q}^{a} t\right| \leq \int_{a}^{x}|f(t)| d_{q}^{a} t
$$

In the following Section we give an estimate for q-integrable product. This estimate does not hold in general, but only for the lower bound of the q-integral that is on q-lattice, as we will see in Theorem 2 .

4 Estimate for q-integrable product

Here and hereafter we suppose that $f:[a, b] \rightarrow \mathbb{R}$ is q-differentiable on $[a, b]$, therefore the limit $\lim _{x \rightarrow a} D_{q}^{a} f(x)$ exists.

The symbol $L_{q}^{\infty}[a, b]$ denotes the space of bounded functions on $[a, b]$ with the norm

$$
\|f\|_{\infty}^{[a, b]}=\sup _{t \in[a, b]}|f(t)|
$$

Theorem 2. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is such that $|f|$ is a q-integrable function on $[a, b]$. Furthermore, let $g:[a, b] \rightarrow \mathbb{R}$ be a bounded function on $[a, b]$. Then, for every $x \in\langle a, b]$ and $m \in \mathbb{N}_{0}$ the following identity holds

$$
\begin{equation*}
\int_{a+q^{m}(x-a)}^{x}|f(t)||g(t)| d_{q}^{a} t \leq\|g\|_{\infty}^{[a, x]} \int_{a+q^{m}(x-a)}^{x}|f(t)| d_{q}^{a} t . \tag{6}
\end{equation*}
$$

Proof. From the definitions (2) and (3) we have

$$
\begin{aligned}
& \quad \int_{a+q^{m}(x-a)}^{x}|f(t)||g(t)| d_{q}^{a} t=\int_{a}^{x}|f(t)||g(t)| d_{q}^{a} t-\int_{a}^{a+q^{m}(x-a)}|f(t)||g(t)| d_{q}^{a} t \\
& =(1-q)(x-a) \sum_{k=0}^{\infty} q^{k}\left|f\left(a+q^{k}(x-a)\right)\right|\left|g\left(a+q^{k}(x-a)\right)\right| \\
& -(1-q) q^{m}(x-a) \sum_{k=0}^{\infty} q^{k}\left|f\left(a+q^{k+m}(x-a)\right)\right|\left|g\left(a+q^{k+m}(x-a)\right)\right| \\
& =(1-q)(x-a) \sum_{k=0}^{m-1} q^{k}\left|f\left(a+q^{k}(x-a)\right)\right|\left|g\left(a+q^{k}(x-a)\right)\right| \\
& \leq\|g\|_{\infty}^{[a, x]}(1-q)(x-a) \sum_{k=0}^{m-1} q^{k}\left|f\left(a+q^{k}(x-a)\right)\right| \\
& =\|g\|_{\infty}^{[a, x]}(1-q)(x-a) \sum_{k=0}^{\infty} q^{k}\left|f\left(a+q^{k}(x-a)\right)\right|
\end{aligned}
$$

$$
\begin{aligned}
& -\|g\|_{\infty}^{[a, x]}(1-q) q^{m}(x-a) \sum_{k=0}^{\infty} q^{k}\left|f\left(a+q^{k+m}(x-a)\right)\right| \\
& =\|g\|_{\infty}^{[a, x]} \int_{a+q^{m}(x-a)}^{x}|f(t)| d_{q}^{a} t .
\end{aligned}
$$

Remark 2. If we take $m=0$ in (6) we obtain that for every $x \in\langle a, b]$

$$
\int_{a}^{x}|f(t)||g(t)| d_{q}^{a} t \leq\|g\|_{\infty}^{[a, x]} \int_{a}^{x}|f(t)| d_{q}^{a} t
$$

Now we will use the inequality (6) and (5) together with Montgomery identity stated in [1] to refine some recently obtained Ostrowski inequalities for shifted quantum integral operator.

5 Refinements of Ostrowski type inequalities for q-integrals

Ostrowski inequalities for which we will give refinements were proved by the mean value theorem for q-integrals in [2]. The first inequality is valid for every $x \in[a, b]$ and the second, with a tighter bound then the first, is valid only on the q-lattice, that is for $x=a+q^{m}(b-a), m \in \mathbb{N}_{0}$.
Next identity for q-integrals is given in [1].
Lemma 2. Let $f:[a, b] \rightarrow \mathbb{R}$ be arbitrary function and $x \in[a, b]$. Then the following identity holds

$$
\begin{align*}
f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d_{q}^{a} t & =(b-a) \int_{0}^{\frac{x-a}{-a}}(q t) D_{q}^{a} f(t b+(1-t) a) d_{q}^{0} t \\
& +(b-a) \int_{\frac{x-a}{b-a}}^{1}(q t-1) D_{q}^{a} f(t b+(1-t) a) d_{q}^{0} t \tag{7}
\end{align*}
$$

Remark 3. In the case when $q=1$, identity (7) reduces to classic Montgomery identity for Riemann integral (see [7] or [9]).

The following theorem gives generalization of Ostrowski inequality and its refinement for q-integrals that is valid for every $x \in[a, b]$.

Theorem 3. (Refinement Ostrowski inequality for q-calculus) Let $f:[a, b] \rightarrow \mathbb{R}$ be a q-integrable function over $[a, b]$. For $x \in[a, b]$ following inequalities hold

$$
\begin{aligned}
\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d_{q}^{a} t\right| & \leq \frac{(b-a)}{1+q}\left\|D_{q}^{a} f\right\|_{\infty}^{[a, b]}+(x-a)\left\|D_{q}^{a} f\right\|_{\infty}^{[a, x]} \\
& \leq(b-a)\left(\frac{1}{1+q}+\frac{x-a}{b-a}\right)\left\|D_{q}^{a} f\right\|_{\infty}^{[a, b]}
\end{aligned}
$$

Proof. Starting from (7) we have

$$
\begin{aligned}
& \left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d_{q}^{a} t\right| \\
& =(b-a)\left|\int_{0}^{\frac{x-a}{b-a}}(q t) D_{q}^{a} f(t b+(1-t) a) d_{q}^{0} t+\int_{\frac{x-a}{\frac{x-a}{b-a}}}^{1}(q t-1) D_{q}^{a} f(t b+(1-t) a) d_{q}^{0} t\right| \\
& =(b-a)\left|\int_{0}^{1}(q t-1) D_{q}^{a} f(t b+(1-t) a) d_{q}^{0} t+\int_{0}^{\frac{x-a}{b-a}} D_{q}^{a} f(t b+(1-t) a) d_{q}^{0} t\right| \\
& \leq(b-a)\left(\left|\int_{0}^{1}(q t-1) D_{q}^{a} f(t b+(1-t) a) d_{q}^{0} t\right|+\left|\int_{0}^{\frac{x-a}{b-a}} D_{q}^{a} f(t b+(1-t) a) d_{q}^{0} t\right|\right)
\end{aligned}
$$

By using triangle inequality for q-integrals (5), inequality (6), and

$$
\left\|D_{q}^{a} f(t b+(1-t) a)\right\|_{\infty}^{\left[0, \frac{x-a}{b-a}\right]}=\left\|D_{q}^{a} f\right\|_{\infty}^{[a, x]}
$$

we have

$$
\begin{aligned}
& (b-a)\left(\left|\int_{0}^{1}(q t-1) D_{q}^{a} f(t b+(1-t) a) d_{q}^{0} t\right|+\left|\int_{0}^{\frac{x-a}{b-a}} D_{q}^{a} f(t b+(1-t) a) d_{q}^{0} t\right|\right) \\
& \leq(b-a)\left\|D_{q}^{a} f\right\|_{\infty}^{[a, b]} \int_{0}^{1}(1-q t) d_{q}^{0} t+(b-a)\left\|D_{q}^{a} f\right\|_{\infty}^{[a, x]}\left(\frac{x-a}{b-a}\right) \\
& =(b-a)\left(\left(1-\frac{q}{1+q}\right)\left\|D_{q}^{a} f\right\|_{\infty}^{[a, b]}+\frac{x-a}{b-a}\left\|D_{q}^{a} f\right\|_{\infty}^{[a, x]}\right)
\end{aligned}
$$

and the first inequality is proved. The second follows immediately after applying $\left\|D_{q}^{a} f\right\|_{\infty}^{[a, x]} \leq\left\|D_{q}^{a} f\right\|_{\infty}^{[a, b]}$.

In next theorem we give generalization of Ostrowski inequality and its refinement for q-integrals. This inequality is valid only on the q-lattice, that is for $x=a+q^{m}(b-a), m \in \mathbb{N}_{0}$. In the proof we will use the result from 11:

$$
\int_{a}^{x}(t-a)^{n} d_{q}^{a} t=\left(\frac{1-q}{1-q^{n+1}}\right)(x-a)^{n+1}
$$

Theorem 4. (Refinement of Ostrowski inequality for q-calculus on q lattice) Let $f:[a, b] \rightarrow \mathbb{R}$ be a q-integrable function over $[a, b]$ and $m \in$ \mathbb{N}_{0}. Then the following inequalities hold

$$
\begin{aligned}
& \left|f\left(a+q^{m}(b-a)\right)-\frac{1}{b-a} \int_{a}^{b} f(t) d_{q}^{a} t\right| \\
& \leq(b-a)\left[\frac{q^{2 m+1}}{1+q}\left\|D_{q}^{a} f\right\|_{\infty}^{\left[a, a+q^{m}(b-a)\right]}+\left(\frac{1+q^{2 m+1}}{1+q}-q^{m}\right)\left\|D_{q}^{a} f\right\|_{\infty}^{[a, b]}\right] \\
& \leq(b-a)\left(\frac{1+2 q^{2 m+1}}{1+q}-q^{m}\right)\left\|D_{q}^{a} f\right\|_{\infty}^{[a, b]}
\end{aligned}
$$

Proof. Starting from (7) we have

$$
\begin{aligned}
& \left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d_{q}^{a} t\right| \\
& =(b-a)\left|\int_{0}^{\frac{x-a}{b-a}}(q t) D_{q}^{a} f(t b+(1-t) a) d_{q}^{0} t+\int_{\frac{x-a}{b-a}}^{1}(q t-1) D_{q}^{a} f(t b+(1-t) a) d_{q}^{0} t\right| \\
& \leq(b-a)\left|\int_{0}^{\frac{x-a}{b-a}}(q t) D_{q}^{a} f(t b+(1-t) a) d_{q}^{0} t\right| \\
& +(b-a)\left|\int_{\left\lvert\, \frac{x-a}{b-a}\right.}^{1}(q t-1) D_{q}^{a} f(t b+(1-t) a) d_{q}^{0} t\right|
\end{aligned}
$$

In order to apply triangle inequality for q-integrals (5) and inequality (6) we have to take $x=a+q^{m}(b-a)$. Thus, for $x=a+q^{m}(b-a)$, we further have

$$
\left|\int_{0}^{\frac{x-a}{b-a}}(q t) D_{q}^{a} f(t b+(1-t) a) d_{q}^{0} t\right| \leq \int_{0}^{\frac{x-a}{b-a}}\left|(q t) D_{q}^{a} f(t b+(1-t) a)\right| d_{q}^{0} t
$$

$$
\leq\left\|D_{q}^{a} f\right\|_{\infty}^{[a, x]} \int_{0}^{\frac{x-a}{b-a}} q t d_{q}^{0} t \leq \frac{q}{1+q}\left(\frac{x-a}{b-a}\right)^{2}\left\|D_{q}^{a} f\right\|_{\infty}^{[a, x]}
$$

since

$$
\left\|D_{q}^{a} f(t b+(1-t) a)\right\|_{\infty}^{\left[0, \frac{x-a}{b-a}\right]}=\left\|D_{q}^{a} f\right\|_{\infty}^{[a, x]}
$$

We also note that it is valid

$$
\left\|D_{q}^{a} f(t b+(1-t) a)\right\|_{\infty}^{[0,1]}=\left\|D_{q}^{a} f\right\|_{\infty}^{[a, b]} .
$$

Now we obtain

$$
\begin{aligned}
& \left|\int_{\substack{\frac{x}{b-a} \\
b-a}}^{1}(q t-1) D_{q}^{a} f(t b+(1-t) a) d_{q}^{0} t\right| \\
& \leq \int_{\frac{x}{x-a}}^{b-a}\left|(q t-1) D_{q}^{a} f(t b+(1-t) a)\right| d_{q}^{0} t \leq\left\|D_{q}^{a} f\right\|_{\infty}^{[a, b]} \int_{\frac{x}{x-a}}^{1}(1-q t) d_{q}^{0} t \\
& \leq\left\|D_{q}^{a} f\right\|_{\infty}^{[a, b]}\left(\left(1-\frac{x-a}{b-a}\right)-\frac{q}{1+q}\left(1-\left(\frac{x-a}{b-a}\right)^{2}\right)\right)
\end{aligned}
$$

If we take $x=a+q^{m}(b-a)$ we obtain

$$
\begin{aligned}
& \left(1-\frac{x-a}{b-a}\right)-\frac{q}{1+q}\left(1-\left(\frac{x-a}{b-a}\right)^{2}\right) \\
& =\left(1-q^{m}\right)-\frac{q}{1+q}\left(1-q^{2 m}\right)=\frac{1+q^{2 m+1}}{1+q}-q^{m},
\end{aligned}
$$

and the first inequality is proved. The second follows immediately after applying $\left\|D_{q}^{a} f\right\|_{\infty}^{[a, x]} \leq\left\|D_{q}^{a} f\right\|_{\infty}^{[a, b]}$.

Remark 4. Let us note, as stated at beginning of Section 4, that the function $f:[a, b] \rightarrow \mathbb{R}$ is taken to be q-differentiable on $[a, b]$. Therefore, by Remark 4 from [2], we also note that this function is continuous at $x=a$. This is the reason why we didn't write this assumption in Theorem 4 Furthermore, as for such function it is also valid

$$
\sup _{t \in[a, b]}|f(t)|=\sup _{t \in\langle a, b]}|f(t)|,
$$

we did not use the $\left\|\|_{\infty}^{\langle a, b]}\right.$ norm on half-opened interval in Theorem 3 and Theorem [4, as was done in [2] in Theorem 8 and Theorem 14.

Remark 5. Second inequalities in Theorem 3 and Theorem 4 were obtained in [2] so the first ones are their refinements. Authors of [2], have also proven that they have obtained sharp inequalities. We conclude that, as their refinements, the first inequalities in Theorem 3 and Theorem 4 are also sharp.

References

[1] A. Aglić Aljinović, D. Kovačević, M. Kunt, M. Puljiz, Correction: Quantum Montgomery identity and quantum estimates of Ostrowski type inequalities, AIMS Math.,6 (2) (2022): 1880-1888.
[2] A. Aglić Aljinović, D. Kovačević, M. Puljiz, A. Žgaljić Keko, On Ostrowski inequality for quantum calculus, Appl. Math. Comput. 410 (2021), Paper No. 126454, 13 pp.
[3] M. H. Annaby, Z. S. Mansour, q - Fractional Calculus and Equations, Springer, Heidelberg, 2012.
[4] F. H. Jackson, On q-functions and a certain difference operator, Trans. R. Soc. Edinb. 46 (1908), 253-281.
[5] F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math. 41 (1910), 193-203.
[6] V. Kac, P. Cheung, Quantum Calculus, Springer, New York, 2002.
[7] D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, Inequalities for functions and their Integrals and Derivatives, Kluwer Academic Publishers, Dordrecht, 1994.
[8] A. Ostrowski, Über die Absolutabweichung einer differentiebaren Funktion von ihrem Integralmittelwert, Comment. Math. Helv. 10 (1938), 226-227.
[9] J. Pečarić, On the Čebyšev inequality, Bul. Stiint. Tehn. Inst. Politehn. "Traian Vuia" Timisoara 25 (39) (1980), 5-9.
[10] J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and application to impulsive difference equations, Adv. Differ. Equ. 2013, 282, (2013).
[11] J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals, J. Inequal. Appl. 2014, article ID 121, (2014).

Andrea Aglić Aljinović
University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia
E-mail address: andrea.aglic@fer.hr
Ilko Brnetić
University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia
E-mail address: ilko.brnetic@fer.hr

Ana Žgaljić Keko
University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia
E-mail address: ana.zgaljic-keko@fer.hr

