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Abstract

We show that general integral triangle inequality does not hold for shifted
q-integrals. Furthermore, we obtain a triangle inequality for shifted q-
integrals. We also give an estimate for q-integrable product and use
it to refine some recently obtained Ostrowski inequalities for quantum
calculus.
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1 Introduction

Quantum calculus is a calculus that does not use the concept of the limit,
as it is based on finite differences. Herein, we will consider a branch of
quantum calculus called q-calculus. Basic notions in this type of cal-
culus, q-derivative and q-integral, were introduced by F.H.Jackson [4].
In this work we focus our attention on shifted q-derivative and q-integral.

This manuscript is organized as follows, in Section 2 we give q-calculus
preliminaries, we state basic definitions and properties for shifted q-
derivatives and shifted q-integrals known from the literature [10]. After–
wards, in Section 3 we show by counterexamples that for f : [a, x] → R
that is q-integrable, the triangle inequality in general does not hold for
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every c ∈ [a, x]:∣∣∣∣∫ x

c

f(t)daq t

∣∣∣∣ � ∫ x

c

|f(t)| daq t (a ≤ c ≤ x < +∞). (1)

However, when c is on the q-lattice, which means that it is of the form
c = a + qm(x − a), fore some m ∈ N0, we show that triangle inequality
holds. In Section 4 we give an estimate for the q-integrable product, also
valid only when the lower bound of the q-integral is on the q-lattice. We
will use this estimate, together with obtained triangle inequality from
Section 3 to finally show, in Section 5, refinements of recently obtained
Ostrowski inequalities (see [8]).

2 Shifted q-derivative and q-integral

Let q ∈ 〈0, 1〉. The shifted q-derivative of an arbitrary function f :
[a, b]→ R is defined by (see [10])

Da
qf (x) =

f (x)− f (a+ q (x− a))

(1− q) (x− a)
, x ∈ 〈a, b] ,

Da
qf (a) = lim

x→a
Da

qf (x) .

Note that every such function is q-differentiable for every x ∈ 〈a, b] and, if
lim
x→a

Da
qf (x) exists, it is q-differentiable on [a, b]. The shifted q-derivative

is a generalization of the Euler-Jackson q-difference operator (see
[4]) and both are discretizations of ordinary derivative, and if f is dif-
ferentiable function then

lim
q→1

Da
qf (x) = f ′ (x) .

Shifted q-integral (a generalization of Jackson integral) is defined by

x∫
a

f (t) daq t = (1− q) (x− a)

∞∑
k=0

qkf
(
a+ qk (x− a)

)
, x ∈ [a, b] . (2)

If the series on the right hand-side converges, then q-integral
∫ x

a
f(t)daq t

exists. If f is continuous function on [a, b], the series

(1− q) (x− a)

∞∑
k=0

qkf
(
a+ qk (x− a)

)
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tends to the Riemann integral when q → 1 ([3], [6]):

lim
q→1

x∫
a

f (t) daq t =

x∫
a

f (t) dt.

The shifted q-integral is a generalization of the Jackson q-integral (see
[5]). If c ∈ 〈a, x〉 shifted q-integral is defined by

x∫
c

f (t) daq t =

x∫
a

f (t) daq t−
c∫

a

f (t) daq t. (3)

In the following theorem important properties of shifted q-derivatives
and q-integrals are given (see [10]).

Theorem 1. For a function f : [a, b]→ R, q ∈ 〈0, 1〉 and x ∈ [a, b], the
following identities hold:

(i)

Da
q

(∫ x

a

f (t) daq t

)
= f (x) ,

(ii) ∫ x

a

Da
qf (t) daq t = f (x)− f (a)

(iii) ∫ x

a

(f (t) + g (t)) daq t =

∫ x

a

f (t) daq t+

∫ x

a

g (t) daq t

(iv) ∫ x

a

αf (t) daq t = α

∫ x

a

f (t) daq t, α ∈ R.

In the next section we will show that general integral triangle inequality
does not hold for shifted q-integrals, as stated in (1). Furthermore, we
will show that triangle inequality for shifted q-integrals is valid when
lower integral bound is a point of the q-lattice.

3 Triangle inequality for shifted q-integrals

In [3], (Section 1.3.1, Remark (ii)) an example of a function is given for
which the triangle inequality for q-integral (Jackson integral) does not
hold. Following this example, here we give an example of a function for
which the triangle inequality for shifted q-integrals does not hold.
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Example 1. Let us consider the function f : [a, b]→ R defined by

f(x) =


4q−n(x−a)−(1+3q)(b−a)

(1−q)(b−a)2 , a+ qn+1 (b− a) ≤ x ≤ a+ qn(q+1)
2 (b− a) ,

4(−q−n(x−a)+(b−a))
(1−q)(b−a)2 , a+ qn(q+1)

2 (b− a) < x ≤ a+ qn (b− a) ,

0, x = a.

where n ∈ N0. This function is visualized in Figure 1.

Figure 1: The function f(x) on [0.2, 3.0] when q = 0.6

It easily follows that the function f is continuous. Furthermore, at the
points of q-lattice it attains the value − 1

b−a , while in the midpoints of

q-lattice it attains the value 1
b−a :

f
(
a+ qn (b− a)

)
= − 1

b− a
, n ∈ N,

and

f

(
a+

qn (q + 1)

2
(b− a)

)
=

1

b− a
, n ∈ N.

In order to show that triangle inequality is not valid we calculate the
following q-integral:
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b∫
a+ q+1

2 (b−a)

f (t) daq t =

b∫
a

f (t) daq t−

a+ q+1
2 (b−a)∫
a

f (t) daq t

= (1− q) (b− a)
∞∑
k=0

qkf
(
a+ qk (b− a)

)
− (1− q)(b− a)

1

2
(q + 1)

∞∑
k=0

qkf

(
a+

qk (q + 1)

2
(b− a)

)

= (1− q) (b− a)

( ∞∑
k=0

qk
(
− 1

b− a

)
− 1

2
(q + 1)

∞∑
k=0

qk
(

1

b− a

))

= −1− 1

2
(q + 1) = −q + 3

2
and we obtain ∣∣∣∣∣∣∣

b∫
a+ q+1

2 (b−a)

f (t) daq t

∣∣∣∣∣∣∣ =
q + 3

2
.

Now, we calculate

b∫
a+ q+1

2 (b−a)

|f (t)| daq t =

b∫
a

|f (t)| daq t−

a+ q+1
2 (b−a)∫
a

|f (t)| daq t

= (1− q) (b− a)

∞∑
k=0

qk
∣∣f (a+ qk (b− a)

)∣∣
− (1− q)(b− a)

1

2
(q + 1)

∞∑
k=0

qk
∣∣∣∣f (a+

qk (q + 1)

2
(b− a)

)∣∣∣∣
= (1− q) (b− a)

( ∞∑
k=0

qk
(

1

b− a

)
− 1

2
(q + 1)

∞∑
k=0

qk
(

1

b− a

))

= 1− 1

2
(q + 1) =

1− q
2

.

We have shown that∣∣∣∣∣∣∣
b∫

a+ q+1
2 (b−a)

f (t) daq t

∣∣∣∣∣∣∣ >
b∫

a+ q+1
2 (b−a)

|f (t)| daq t,

and therefore the triangle inequality is not valid in general, for every
c ∈ [a, b], as written in (1).
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Example 2. Now we consider the function f : [a, b]→ R defined by

f (x) =
b− x
b− a

, x ∈ [a, b]. (4)

Using the function(4) we calculate

b∫
a+b

2

f (t) daq t =

b∫
a

f (t) daq t−

a+b
2∫

a

f (t) daq t

= (1− q) (b− a)

( ∞∑
k=0

qkf
(
a+ qk (b− a)

)
− 1

2

∞∑
k=0

qkf

(
a+ qk

b− a
2

))

= (1− q) (b− a)

( ∞∑
k=0

qk
(
1− qk

)
− 1

2

∞∑
k=0

qk
(

1− 1

2
qk
))

= (b− a)

(
q

1 + q
− 1 + 2q

4 (1 + q)

)
= (b− a)

2q − 1

4 (1 + q)
.

For every q ∈
〈
0, 12
〉

we have∣∣∣∣∣∣∣
b∫

a+b
2

f (t) daq t

∣∣∣∣∣∣∣ = (b− a)
1− 2q

4 (1 + q)
.

Let us note that the function (4) is positive, so it follows that

b∫
a+b

2

|f (t)| daq t =

b∫
a+b

2

f (t) daq t = (b− a)
2q − 1

4 (1 + q)
< 0.

We have shown once more that the triangle inequality for shifted q-
integrals generally does not hold as we have obtained∣∣∣∣∣∣∣

b∫
a+b

2

f (t) daq t

∣∣∣∣∣∣∣ = (b− a)
1− 2q

4 (1 + q)
> − (b− a)

1− 2q

4 (1 + q)
=

b∫
a+b

2

|f (t)| daq t.

Now, we will show that the triangle inequality is valid when lower bound
of the q-integral is on the q-lattice. In the next lemma the triangle
inequality for shifted q-integrals is given.
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Lemma 1. Let f : [a, b]→ R be such that |f | is a q-integrable function
on [a, b].Then for every x ∈ 〈a, b] and m ∈ N0, the following inequality
holds ∣∣∣∣∣∣∣

x∫
a+qm(x−a)

f (t) daq t

∣∣∣∣∣∣∣ ≤
x∫

a+qm(x−a)

|f (t)| daq t, (5)

Proof. From the definitions (2) and (3) we have∣∣∣∣∣∣∣
x∫

a+qm(x−a)

f (t) daq t

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
x∫

a

f (t) daq t−
a+qm(x−a)∫

a

f (t) daq t

∣∣∣∣∣∣∣
=

∣∣∣∣∣(1− q) (x− a)

∞∑
k=0

qkf
(
a+ qk (x− a)

)
− (1− q) (qm (x− a))

∞∑
k=0

qkf
(
a+ qk+m (x− a)

)∣∣∣∣∣
=

∣∣∣∣∣(1− q) (x− a)

m−1∑
k=0

qkf
(
a+ qk (x− a)

)∣∣∣∣∣ .
Now we use the discrete triangle inequality for finite sequence to obtain∣∣∣∣∣(1− q) (x− a)

m−1∑
k=0

qkf
(
a+ qk (x− a)

)∣∣∣∣∣
≤ (1− q) (x− a)

m−1∑
k=0

qk
∣∣f (a+ qk (x− a)

)∣∣
= (1− q) (x− a)

∞∑
k=0

qk
∣∣f (a+ qk (x− a)

)∣∣
− (1− q) (qm (x− a))

∞∑
k=0

qk
∣∣f (a+ qk+m (x− a)

)∣∣
=

x∫
a

|f (t)| daq t−
a+qm(x−a)∫

a

|f (t)| daq t =

x∫
a+qm(x−a)

|f (t)| daq t.

Remark 1. If we take m = 0 in (5) we obtain that for every x ∈ 〈a, b]∣∣∣∣∣∣
x∫

a

f (t) daq t

∣∣∣∣∣∣ ≤
x∫

a

|f (t)| daq t.
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In the following Section we give an estimate for q-integrable product.
This estimate does not hold in general, but only for the lower bound of
the q-integral that is on q-lattice, as we will see in Theorem 2.

4 Estimate for q-integrable product

Here and hereafter we suppose that f : [a, b] → R is q-differentiable on
[a, b], therefore the limit lim

x→a
Da

qf (x) exists.

The symbol L∞q [a, b] denotes the space of bounded functions on [a, b]
with the norm

‖f‖[a,b]∞ = sup
t∈[a,b]

|f (t)| .

Theorem 2. Suppose that f : [a, b]→ R is such that |f | is a q-integrable
function on [a, b]. Furthermore, let g : [a, b] → R be a bounded function
on [a, b]. Then, for every x ∈ 〈a, b] and m ∈ N0 the following identity
holds

x∫
a+qm(x−a)

|f (t)| |g (t)| daq t ≤ ‖g‖
[a,x]
∞

x∫
a+qm(x−a)

|f (t)| daq t. (6)

Proof. From the definitions (2) and (3) we have

x∫
a+qm(x−a)

|f (t)| |g (t)| daq t =

x∫
a

|f (t)| |g (t)| daq t−
a+qm(x−a)∫

a

|f (t)| |g (t)| daq t

= (1− q) (x− a)

∞∑
k=0

qk
∣∣f (a+ qk (x− a)

)∣∣ ∣∣g (a+ qk (x− a)
)∣∣

− (1− q) qm (x− a)

∞∑
k=0

qk
∣∣f (a+ qk+m (x− a)

)∣∣ ∣∣g (a+ qk+m (x− a)
)∣∣

= (1− q) (x− a)

m−1∑
k=0

qk
∣∣f (a+ qk (x− a)

)∣∣ ∣∣g (a+ qk (x− a)
)∣∣

≤ ‖g‖[a,x]∞ (1− q) (x− a)

m−1∑
k=0

qk
∣∣f (a+ qk (x− a)

)∣∣
= ‖g‖[a,x]∞ (1− q) (x− a)

∞∑
k=0

qk
∣∣f (a+ qk (x− a)

)∣∣
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− ‖g‖[a,x]∞ (1− q) qm (x− a)

∞∑
k=0

qk
∣∣f (a+ qk+m (x− a)

)∣∣
= ‖g‖[a,x]∞

x∫
a+qm(x−a)

|f (t)| daq t.

Remark 2. If we take m = 0 in (6) we obtain that for every x ∈ 〈a, b]
x∫

a

|f (t)| |g (t)| daq t ≤ ‖g‖
[a,x]
∞

x∫
a

|f (t)| daq t.

Now we will use the inequality (6) and (5) together with Montgomery
identity stated in [1] to refine some recently obtained Ostrowski inequal-
ities for shifted quantum integral operator.

5 Refinements of Ostrowski type inequali-
ties for q-integrals

Ostrowski inequalities for which we will give refinements were proved by
the mean value theorem for q-integrals in [2]. The first inequality is valid
for every x ∈ [a, b] and the second, with a tighter bound then the first,
is valid only on the q-lattice, that is for x = a+ qm (b− a), m ∈ N0.
Next identity for q-integrals is given in [1].

Lemma 2. Let f : [a, b]→ R be arbitrary function and x ∈ [a, b]. Then
the following identity holds

f (x)− 1

b− a

∫ b

a

f (t) daq t = (b− a)

x−a
b−a∫
0

(qt)Da
qf (tb+ (1− t) a) d0qt

+ (b− a)

1∫
x−a
b−a

(qt− 1)Da
qf (tb+ (1− t) a) d0qt.

(7)

Remark 3. In the case when q = 1, identity (7) reduces to classic
Montgomery identity for Riemann integral (see [7] or [9]).

The following theorem gives generalization of Ostrowski inequality
and its refinement for q-integrals that is valid for every x ∈ [a, b].
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Theorem 3. (Refinement Ostrowski inequality for q-calculus) Let
f : [a, b]→ R be a q-integrable function over [a, b]. For x ∈ [a, b] follow-
ing inequalities hold∣∣∣∣∣∣f (x)− 1

b− a

b∫
a

f (t) daq t

∣∣∣∣∣∣ ≤ (b− a)

1 + q

∥∥Da
qf
∥∥[a,b]
∞ + (x− a)

∥∥Da
qf
∥∥[a,x]
∞

≤ (b− a)

(
1

1 + q
+
x− a
b− a

)∥∥Da
qf
∥∥[a,b]
∞ .

Proof. Starting from (7) we have

∣∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) daq t

∣∣∣∣∣
= (b− a)

∣∣∣∣∣∣∣∣
x−a
b−a∫
0

(qt)Da
qf (tb+ (1− t) a) d0qt+

1∫
x−a
b−a

(qt− 1)Da
qf (tb+ (1− t) a) d0qt

∣∣∣∣∣∣∣∣
= (b− a)

∣∣∣∣∣∣∣
1∫

0

(qt− 1)Da
qf (tb+ (1− t) a) d0qt+

x−a
b−a∫
0

Da
qf (tb+ (1− t) a) d0qt

∣∣∣∣∣∣∣
≤ (b− a)


∣∣∣∣∣∣

1∫
0

(qt− 1)Da
qf (tb+ (1− t) a) d0qt

∣∣∣∣∣∣+

∣∣∣∣∣∣∣
x−a
b−a∫
0

Da
qf (tb+ (1− t) a) d0qt

∣∣∣∣∣∣∣
 .

By using triangle inequality for q-integrals (5), inequality (6), and

∥∥Da
qf (tb+ (1− t) a)

∥∥[0, x−a
b−a ]

∞ =
∥∥Da

qf
∥∥[a,x]
∞

we have

(b− a)


∣∣∣∣∣∣

1∫
0

(qt− 1)Da
qf (tb+ (1− t) a) d0qt

∣∣∣∣∣∣+

∣∣∣∣∣∣∣
x−a
b−a∫
0

Da
qf (tb+ (1− t) a) d0qt

∣∣∣∣∣∣∣


≤ (b− a)
∥∥Da

qf
∥∥[a,b]
∞

1∫
0

(1− qt) d0qt+ (b− a)
∥∥Da

qf
∥∥[a,x]
∞

(
x− a
b− a

)

= (b− a)

((
1− q

1 + q

)∥∥Da
qf
∥∥[a,b]
∞ +

x− a
b− a

∥∥Da
qf
∥∥[a,x]
∞

)
and the first inequality is proved. The second follows immediately after

applying
∥∥Da

qf
∥∥[a,x]
∞ ≤

∥∥Da
qf
∥∥[a,b]
∞ .
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In next theorem we give generalization of Ostrowski inequality and
its refinement for q-integrals. This inequality is valid only on the
q-lattice, that is for x = a+ qm (b− a), m ∈ N0. In the proof we will use
the result from [11]:∫ x

a

(t− a)
n
daq t =

(
1− q

1− qn+1

)
(x− a)

n+1
.

Theorem 4. (Refinement of Ostrowski inequality for q-calculus on q-
lattice) Let f : [a, b] → R be a q-integrable function over [a, b] and m ∈
N0. Then the following inequalities hold∣∣∣∣∣∣f (a+ qm (b− a))− 1

b− a

b∫
a

f (t) daq t

∣∣∣∣∣∣
≤ (b− a)

[
q2m+1

1 + q

∥∥Da
qf
∥∥[a,a+qm(b−a)]
∞ +

(
1 + q2m+1

1 + q
− qm

)∥∥Da
qf
∥∥[a,b]
∞

]

≤ (b− a)

(
1 + 2q2m+1

1 + q
− qm

)∥∥Da
qf
∥∥[a,b]
∞ .

Proof. Starting from (7) we have∣∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) daq t

∣∣∣∣∣
= (b− a)

∣∣∣∣∣∣∣∣
x−a
b−a∫
0

(qt)Da
qf (tb+ (1− t) a) d0qt+

1∫
x−a
b−a

(qt− 1)Da
qf (tb+ (1− t) a) d0qt

∣∣∣∣∣∣∣∣
≤ (b− a)

∣∣∣∣∣∣∣
x−a
b−a∫
0

(qt)Da
qf (tb+ (1− t) a) d0qt

∣∣∣∣∣∣∣
+ (b− a)

∣∣∣∣∣∣∣∣
1∫

x−a
b−a

(qt− 1)Da
qf (tb+ (1− t) a) d0qt

∣∣∣∣∣∣∣∣
In order to apply triangle inequality for q-integrals (5) and inequality
(6) we have to take x = a+ qm (b− a). Thus, for x = a+ qm (b− a), we
further have∣∣∣∣∣∣∣

x−a
b−a∫
0

(qt)Da
qf (tb+ (1− t) a) d0qt

∣∣∣∣∣∣∣ ≤
x−a
b−a∫
0

∣∣(qt)Da
qf (tb+ (1− t) a)

∣∣ d0qt
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≤
∥∥Da

qf
∥∥[a,x]
∞

x−a
b−a∫
0

qtd0qt ≤
q

1 + q

(
x− a
b− a

)2 ∥∥Da
qf
∥∥[a,x]
∞ ,

since ∥∥Da
qf (tb+ (1− t) a)

∥∥[0, x−a
b−a ]

∞ =
∥∥Da

qf
∥∥[a,x]
∞ .

We also note that it is valid∥∥Da
qf (tb+ (1− t) a)

∥∥[0,1]
∞ =

∥∥Da
qf
∥∥[a,b]
∞ .

Now we obtain∣∣∣∣∣∣∣∣
1∫

x−a
b−a

(qt− 1)Da
qf (tb+ (1− t) a) d0qt

∣∣∣∣∣∣∣∣
≤

1∫
x−a
b−a

∣∣(qt− 1)Da
qf (tb+ (1− t) a)

∣∣ d0qt ≤ ∥∥Da
qf
∥∥[a,b]
∞

1∫
x−a
b−a

(1− qt) d0qt

≤
∥∥Da

qf
∥∥[a,b]
∞

((
1− x− a

b− a

)
− q

1 + q

(
1−

(
x− a
b− a

)2
))

.

If we take x = a+ qm (b− a) we obtain(
1− x− a

b− a

)
− q

1 + q

(
1−

(
x− a
b− a

)2
)

= (1− qm)− q

1 + q

(
1− q2m

)
=

1 + q2m+1

1 + q
− qm,

and the first inequality is proved. The second follows immediately after

applying
∥∥Da

qf
∥∥[a,x]
∞ ≤

∥∥Da
qf
∥∥[a,b]
∞ .

Remark 4. Let us note, as stated at beginning of Section 4, that the
function f : [a, b]→ R is taken to be q-differentiable on [a, b]. Therefore,
by Remark 4 from [2], we also note that this function is continuous
at x = a. This is the reason why we didn’t write this assumption in
Theorem 4. Furthermore, as for such function it is also valid

sup
t∈[a,b]

|f(t)| = sup
t∈〈a,b]

|f(t)|,

we did not use the ‖ ‖〈a,b]∞ norm on half-opened interval in Theorem 3
and Theorem 4, as was done in [2] in Theorem 8 and Theorem 14.
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Remark 5. Second inequalities in Theorem 3 and Theorem 4 were ob-
tained in [2] so the first ones are their refinements. Authors of [2], have
also proven that they have obtained sharp inequalities. We conclude that,
as their refinements, the first inequalities in Theorem 3 and Theorem 4
are also sharp.
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