
ACTA MATHEMATICA SPALATENSIA
Vol.2 (2022) 69–82
https://doi.org/10.32817/ams.2.5

Received: 15 Mar 2022
Accepted: 04 July 2022

Bayesian statistics approach to chess

engines optimization

Ivan Ivec, Ivana Vojnović

Abstract

We develop a new method for stochastic optimization using the Bayesian
statistics approach. More precisely, we optimize parameters of chess en-
gines as those data are available to us, but the method should apply to all
situations where we want to optimize a certain gain/loss function which
has no analytical form and thus cannot be measured directly but only
by comparison of two parameter sets. We also experimentally compare
the new method with the famous SPSA method.

Keywords: Bayesian statistics, stochastic optimization, chess engines

2010 Math. Subj. Class.: 62F15, 62L20, 65K10

1 Introduction

The simultaneous perturbation stochastic approximation (SPSA) method
for multivariate optimization problems was introduced in [6], and it
found numerous applications in engineering and the physical and so-
cial sciences. The method was more fully analyzed in [7], while in [8], it
was given a simple step-by-step guide to the implementation of SPSA,
with references to various applications.

More recently, the SPSA method was implemented in [10] as a tuner of
parameters of the Stockfish chess engine. Stockfish is an open source
project [11], and it is currently the strongest chess engine in the world

69

https://doi.org/10.32817/ams.2.5

IVAN IVEC IVANA VOJNOVIĆ

(winning the last five seasons of the famous TCEC competition [12] and
being on the top of the CCRL rating lists [3]), much stronger than the
engine used by the famous Deep Blue computer, which defeated a reign-
ing chess world champion, Garry Kasparov, in 1997. Over the years, the
SPSA method brought many successful patches to Stockfish and other
chess engines.

However, tuning parameters of chess engines is computationally very de-
manding, and many tuning attempts are unsuccessful. In this paper, we
try to use the Bayesian statistics approach to find a method that will
be better, at least in some situations. We choose this approach because
Bayesian inference is known for giving good posterior distributions from
pretty bad prior distributions if the prior’s support and shape are rea-
sonably selected. For more details and references regarding Bayesian
optimization, see [5].

In the next section, we provide some theoretical justifications for our
method, which we call the BSPSA method because of the Bayesian ap-
proach and because of a similarity with the SPSA method. In fact, a dif-
ference from SPSA method will be in a way of updating parameters’ ap-
proximations. We want to optimize parameters θ = (θ(1), θ(2), . . . , θ(n)) ∈
Rn, and because the game of chess is a stochastic process, that actually
means that we are looking for a distribution of the optimal value of θ.
In other words, we try to obtain θ that will work best in most situa-
tions, and the mean value of the distribution will be a candidate for
that. SPSA updates parameters by formula

θ
(i)
k+1 = θ

(i)
k +

a
(i)
k

∆
(i)
k c

(i)
k

· wk ,

where a
(i)
k ,∆

(i)
k and c

(i)
k are appropriate sequences and wk is the result

of an experiment (two-game match in our case) – see the beginning
of the third section for more details. BSPSA will update parameters
using the famous Bayes’ theorem for the conditional probability, i.e. the
formula (1) given below. We provide experimental results in the third
section, comparing SPSA and BSPSA. Although we stick to tuning the
Stockfish parameters, we believe the method could also be applied to
other situations where a gain/loss function is not measured directly but
only by comparing two parameter sets. We discuss such possibilities in
the concluding section.

70

BAYESIAN STATISTICS APPROACH TO CHESS ENGINES OPTIMIZATION

2 Theoretical development of a new method

For simplicity, we first look at a single parameter θ ∈ R that we want to
optimize by playing many chess games. The central limit theorem guar-
antees that the distribution of experimentally obtained optimal values
using n games (for n large) will be approximately normal. Of course,
it is always possible that we encounter an ill-behaved parameter whose
optimal value will have an infinite mean or infinite variance and where
the central limit theorem does not apply. Still, such parameters are not
useful in the code of our engine, and we strongly try to avoid them.
Therefore, we construct a sequence (θk), hopefully converging to the op-
timal value θ0, by starting with N(θk, s

2
k) normal prior distribution and

calculating N(θk+1, s
2
k+1) posterior distribution.

So, assuming that we have already obtained θk, we play two games be-
tween an engine E1 that uses θ = θk + ck and an engine E2 that uses
θ = θk− ck, where ck > 0 will be chosen in the same way as in the SPSA
method or in some other way, whichever proves to be more efficient. The
result of this two-game match, from the perspective of the engine E1,
we denote by wk (with possible values 2, 1, 0,−1,−2, coming from one
point for a win, zero points for a draw and −1 for a loss).

Now, if f(wk|θ) is a conditional observation distribution of wk, assum-
ing that θ is given, then the Bayesian inference starting from the prior
distribution with the density

π(θ) ∼ exp

(
− 1

2

(
θ−θk
sk

)2)
gives the posterior distribution with the density

π(θ|wk) ∼ f(wk|θ)π(θ) , (1)

where by a ∼ b we denote that a
b is a constant.

In what follows, we show that, under reasonable assumptions, we can ap-
proximate f(wk|θ) with the density of the normal distribution with the
mean of the form Aθ + B, for some constants A > 0, B ∈ R. Although
wk can obtain only 5 values, approximation with normal distribution
is viable because of the known fact from the Bayesian inference that it
makes no difference whether we analyze observations one at a time in
sequence using the posterior after the previous step as the prior for the
next step, or whether we analyze all observations together in a single
step starting with our initial prior [1, Sections 6.1, 11.1]. More precisely,

71

IVAN IVEC IVANA VOJNOVIĆ

that is why we decide to update our belief about the parameter after ev-
ery two games instead of playing more games with the same parameter.
In that way, the posterior distribution π(θ|wk) will also be normal (at
least approximately), and we obtain explicit formulae for its calculation,
thus avoiding the numerical integration needed to get a constant in (1).

By WR we denote a win rate, i.e. a ratio between wins/points obtained
by the engine E1 and wins/points obtained by the engine E2. Now we
take an assumption that the strength of an engine (expressed as the
number of wins/points obtained) is proportional to the density of the
normal distribution with mean θ (as we assume that θ is optimal) and
standard deviation σ (there is no clear justification for this assumption,
but ideally we would like to construct an engine which parameters are
independent and identically distributed with a finite variance, in which
case the central limit theorem would be a kind of justification again),
thus obtaining

WR = exp

(
−1

2

(θk + ck − θ
σ

)2
+

1

2

(θk − ck − θ
σ

)2)

= exp

(
2ck(θ − θk)

σ2

)
.

The win percentage is then

WP =
WR

WR+ 1
,

and thus we get

wk ≈ 2WP − 2(1−WP) = 2 · WR− 1

WR+ 1

= 2 ·
exp

(
2ck(θ−θk)

σ2

)
− 1

exp
(

2ck(θ−θk)
σ2

)
+ 1

. (2)

Here we approximate wk with its expectation (2WP comes from two
games with the win percentage WP and one point for each win, while
−2(1 −WP) comes from two games with the loss percentage 1 −WP
and −1 point for each loss).

As the most difficult task in practice is to optimize a parameter that is
already pretty close to the optimum, we can take a linear approximation
of the right-hand side in (2) around θ = θk to obtain

wk ≈
2ck(θ − θk)

σ2
. (3)

72

BAYESIAN STATISTICS APPROACH TO CHESS ENGINES OPTIMIZATION

Finally, we use (3) to assume that f(wk|θ) is approximately equal to

the density of the normal distribution with mean 2ck(θ−θk)
σ2 and standard

deviation τ . We also assume that standard deviations σ and τ are con-
stants not depending on θ because we are satisfied with high precision
only around θ = θk.

For the brevity of calculations we denote A = 2ck
σ2 , B = −2ckθk

σ2 and from
(1) we obtain

π(θ|wk) ∼ exp

(
−1

2

(wk −Aθ −B
τ

)2)
· exp

(
−1

2

(θ − θk
sk

)2)

= exp
(
− 1

2

(w2
k +A2θ2 +B2 − 2Aθwk − 2Bwk + 2ABθ

τ2

+
θ2 − 2θkθ + θ2k

s2k

))
= exp

(
−1

2
· (A2s2k + τ2)θ2 − 2(Awks

2
k −ABs2k + θkτ

2)θ + . . .

s2kτ
2

)

∼ exp

(
−1

2
· A

2s2k + τ2

s2kτ
2

(
θ − Awks

2
k −ABs2k + θkτ

2

A2s2k + τ2

)2)
.

We have thus obtained that the posterior distribution is also a normal
distribution with the mean

θk+1 =
Awks

2
k −ABs2k + θkτ

2

A2s2k + τ2

and the variance

s2k+1 =
s2kτ

2

A2s2k + τ2
.

After inserting A = 2ck
σ2 , B = −2ckθk

σ2 we obtain final formulae which
we use to update our belief about the parameter after each two-game
match:

θk+1 = θk +
2cks

2
kσ

2

4c2ks
2
k + τ2σ4

· wk , (4)

s2k+1 =
s2kτ

2σ4

4c2ks
2
k + τ2σ4

. (5)

Remark 1. In the limit τ → 0 the formula (4) reads

θk+1 = θk +
σ2

2ck
· wk ,

73

IVAN IVEC IVANA VOJNOVIĆ

which is exactly the formula used in the SPSA method, with the difference

that SPSA uses ak = a
(A+k)α instead of σ2

2 . This means that uncertainty

of the two-game match, contained in the parameter τ , is our replacement
for the decreasing sequence ak used in the SPSA method. Also, it is
obvious from the formula (5) that 0 < sk+1 < sk, and thus lim

k→∞
sk

exists. By passing to the limit in (5) we get lim
k→∞

sk = 0 if lim
k→∞

ck 6= 0,

which is a good sign to expect the convergence of θk to the optimal value.
At first sight, it seems that ck used in the SPSA method (and so also
in our method) does not satisfy this condition. However, we first choose
the number of iterations N and then we can choose cN to be big enough
and we have ck ≥ cN > 0 for all k ∈ {1, . . . , N}. In addition, this is
another reason (besides those mentioned in the concluding section) for
looking for a better choice of ck in future work.

Remark 2. If we want to optimize more parameters θ = (θ(1), θ(2), . . . ,
θ(n)), then assuming that we have already obtained θk, we play two games
between an engine E1 that uses θ = θk + ∆kck and an engine E2 that
uses θ = θk − ∆kck, where each component of ck is positive and each
component of ∆k is using a Bernoulli ±1 distribution with probability 1

2
for each ±1 outcome. This choice satisfies conditions introduced in [7]
and has already been used in [10]. In our prior distribution we assume
that all parameters are independent:

π(θ) ∼ exp

(
−1

2

n∑
i=1

(θ(i) − θ(i)k
s
(i)
k

)2)
,

and similarly as above we obtain

WR = exp

(
n∑
i=1

2∆
(i)
k c

(i)
k (θ(i) − θ(i)k)

[σ(i)]2

)
and

wk ≈
n∑
i=1

2∆
(i)
k c

(i)
k (θ(i) − θ(i)k)

[σ(i)]2
.

This means that we can assume that f(wk|θ) is approximately equal to
the density of the normal distribution with mean

n∑
i=1

2∆
(i)
k c

(i)
k (θ(i) − θ(i)k)

[σ(i)]2

and standard deviation τ . Using notation

A(i) =
2∆

(i)
k c

(i)
k

[σ(i)]2
, B(i) =

−2∆
(i)
k c

(i)
k θ

(i)
k

[σ(i)]2
(6)

74

BAYESIAN STATISTICS APPROACH TO CHESS ENGINES OPTIMIZATION

we finally obtain the posterior distribution

π(θ|wk) ∼ exp

(
−1

2

(wk − n∑
i=1

(A(i)θ(i) +B(i))

τ

)2)
×

exp

(
−1

2

n∑
i=1

(θ(i) − θ(i)k
s
(i)
k

)2)
. (7)

We see that this is again a multivariate normal distribution but not with
independent variables. In what follows, we first try to approximate it
with an independent case and then perform a full calculation using a
covariance matrix.

Formula (7) could be rewritten as

π(θ|wk) ∼ exp

(
− 1

2

n∑
i=1

(
[θ(i)]2

([A(i)]2

τ2
+

1

[s
(i)
k]2

)

− 2θ(i)

(A(i)wk −A(i)
n∑
j=1

B(j) − 1
2A

(i)
∑
j 6=i

A(j)θ(j)

τ2
+

θ
(i)
k

[s
(i)
k]2

))
,

and if we use an approximation∑
j 6=i

A(j)θ(j) ≈
∑
j 6=i

A(j)θ
(j)
k = −

∑
j 6=i

B(j) , (8)

we obtain

π(θ|wk) ∼ exp

(
− 1

2

n∑
i=1

(
[θ(i)]2

([A(i)]2

τ2
+

1

[s
(i)
k]2

)

− 2θ(i)

(A(i)wk −A(i)B(i) − 1
2A

(i)
∑
j 6=i

B(j)

τ2
+

θ
(i)
k

[s
(i)
k]2

))

∼ exp

(
− 1

2

n∑
i=1

[A(i)]2[s
(i)
k]2 + τ2

[s
(i)
k]2τ2

×

(
θ(i) −

[s
(i)
k]2A(i)

(
wk −B(i) − 1

2

∑
j 6=i

B(j)
)

+ θ
(i)
k τ2

[A(i)]2[s
(i)
k]2 + τ2

)2)
.

We have thus obtained (for any i = 1, 2, . . . , n)

θ
(i)
k+1 =

[s
(i)
k]2A(i)

(
wk −B(i) − 1

2

∑
j 6=i

B(j)
)

+ θ
(i)
k τ2

[A(i)]2[s
(i)
k]2 + τ2

75

IVAN IVEC IVANA VOJNOVIĆ

and

[s
(i)
k+1]2 =

[s
(i)
k]2τ2

[A(i)]2[s
(i)
k]2 + τ2

.

Finally, using (6) we get

θ
(i)
k+1 = θ

(i)
k +

∑
j 6=i

2∆
(i)
k ∆

(j)
k c

(i)
k c

(j)
k [s

(i)
k]2[σ(i)]2

[σ(j)]2(4[c
(i)
k]2[s

(i)
k]2 + τ2[σ(i)]4)

· θ(j)k

+
2∆

(i)
k c

(i)
k [s

(i)
k]2[σ(i)]2

4[c
(i)
k]2[s

(i)
k]2 + τ2[σ(i)]4

· wk , (9)

[s
(i)
k+1]2 =

[s
(i)
k]2τ2[σ(i)]4

4[c
(i)
k]2[s

(i)
k]2 + τ2[σ(i)]4

. (10)

Moreover, we expect better results if we do not use the approximation
(8). To do so, we take a general multivariate normal prior

π(θ) ∼ exp

(
−1

2
(θ − θk)>S−1k (θ − θk)

)
,

with a positive definite covariance matrix Sk to rewrite (7) in the form

π(θ|wk) ∼ exp

(
− 1

2

(wk − n∑
i=1

(A(i)θ(i) +B(i))

τ

)2)
×

exp

(
−1

2
(θ − θk)>S−1k (θ − θk)

)
.

To simplify we use a substitution θ̃ = θ − θk to obtain

π(θ̃) ∼ exp
(
− 1

2 θ̃
>S−1k θ̃

)
and

π(θ̃|wk) ∼ exp

(
− 1

2

(wk − n∑
i=1

A(i)θ̃(i)

τ

)2)
· exp

(
−1

2
θ̃>S−1k θ̃

)
. (11)

We want to show that π(θ̃|wk) could be written in the form

π(θ̃|wk) ∼ exp

(
−1

2
(θ̃ − bk)>S−1k+1(θ̃ − bk)

)
, (12)

76

BAYESIAN STATISTICS APPROACH TO CHESS ENGINES OPTIMIZATION

for some vector bk and some matrix S−1k+1. We obtain that by equating
the coefficients of polynomials in the exponents of (11) and (12). We
denote elements of S−1k as (sij) and elements of S−1k+1 as (tij), and after

equating the coefficients in front of [θ̃(i)]2 we get

tii = sii +
[A(i)]2

τ2
, (13)

while after equating the coefficients in front of θ̃(i)θ̃(j) (for i 6= j) we get

tij = sij +
A(i)A(j)

τ2
. (14)

So, we obtain simple rules for updating elements of S−1k given by (13)
and (14). Actually, (14) covers also (13) by taking i = j.

Obtaining bk is not straightforward. Namely, by equating the coefficients
in front of θ̃(i) we get

tiib
(i)
k +

∑
j 6=i

tijb
(j)
k =

A(i)wk
τ2

,

which is a system of linear equations, which written in the matrix form
reads

S−1k+1 ·

b
(1)
k

b
(2)
k
...

b
(n)
k

 =
wk
τ2

A(1)

A(2)

...
A(n)

 . (15)

The matrix S−1k+1 is almost diagonal. Namely,

S−11 = diag

(
1

[s
(1)
1]2

,
1

[s
(2)
1]2

, . . . ,
1

[s
(n)
1]2

)
,

and by (14) we update its elements with

A(i)A(j)

τ2
=

4∆
(i)
k ∆

(j)
k c

(i)
k c

(j)
k

τ2[σ(i)]2[σ(j)]2
.

ck is quickly converging and ∆
(i)
k ∆

(j)
k (for i 6= j) has a Bernoulli ±1

distribution with probability 1
2 for each ±1 outcome, which means that

non-diagonal elements remain pretty close to zero all the time if we take
σ(i), σ(j) large enough (this can always be achieved by rescaling θ if

77

IVAN IVEC IVANA VOJNOVIĆ

necessary). This is the reason why we used Gauss-Jordan elimination
method without pivoting [2, Section 4.2] for solving the system (15) and
never encountered neither the speed problems, neither the division by
zero problems. Finally, we update our belief about parameters simply
with

θ
(i)
k+1 = θ

(i)
k + b

(i)
k . (16)

3 Experimental results

As already announced, we now compare BSPSAS (BSPSA simple) method
given by (9),(10) and BSPSA method given by (14)–(16) with SPSA
method described in [8] and implemented in [10]. SPSA updates param-
eters by formula

θ
(i)
k+1 = θ

(i)
k +

a
(i)
k

∆
(i)
k c

(i)
k

· wk ,

where

a
(i)
k =

a(i)

(A+ k)
α , c

(i)
k =

c(i)

kγ
, (17)

and where we use α = 0.602, γ = 0.101, A = 0.1N (N = total number of
iterations) – values recommended in [8]. Actually, in [10] new variables
are introduced by

R
(i)
k =

a
(i)
k

[c
(i)
k]2

and R(i) = R
(i)
N are used as input variables. We use this implementation,

and so we discuss optimal values for R(i) later on.

In BSPSA(S), we have used the same formula for c
(i)
k so far, but that is

also a somewhat problematic choice, as it will be discussed later. We also
use fixed value τ = 0.6. Let us recall that τ is the standard deviation of
the approximate conditional distribution of wk (a result of the two-game
match), which can be calculated to be 0.6 for two equally strong engines
with 82% draw rate (which is measured to be the case in our experimen-
tal tests). So, for useful application of BSPSA(S) it remains to obtain

optimal values for s
(i)
1 and σ(i), just as it remains to obtain optimal val-

ues for R(i) in SPSA method. Before we start, we recall the famous Elo
method for measuring the relative strength of chess engines/players (see
[4] for more details).

Definition 1. We say that an engine/player E1 is x Elo points stronger
than an engine/player E2 if his/her expected score (win percentage WP

78

BAYESIAN STATISTICS APPROACH TO CHESS ENGINES OPTIMIZATION

in our earlier notation) in their match is

WP =
1

1 + 10−
x

400
.

We also use the notation

Elo(x) = |p2 − p1|

if an engine with parameter p2 ∈ R is x Elo points stronger than an
engine with parameter p1 ∈ R.

First, we did many experiments under the perfect conditions of the sim-
ulator. Namely, we assumed that all parameters have an optimal value
0 and that Elo loss is quadratic around the optimum, which in the no-
tation of the previous definition means x = a(p21− p22) for some constant
a > 0. The code written in Perl [13] for the BSPSA algorithm (simulator
mode is the part of the code), and the simulator results are available at
[9].

Our first goal was to find hyperparameters (R(i) for SPSA and s
(i)
1 , σ(i)

for BSPSA(S)) that give the best results (on average) in the simulator
mode. For SPSA we got an approximation

R(i) =
19362 · ln

(
1 + Elo(100)

11405

)
N0.6(c

(i)
N)1.6

, (18)

where, as already noted above, N is the total number of iterations during
the execution of the algorithm. For BSPSA(S) we got much simpler
formulae:

s
(i)
1 = ∆θ(i), σ(i) = Elo(100) , (19)

which do not depend on the number of iterations N , but which in turn
require estimation of ∆θ(i) – the distance of the parameter θ(i) from the
optimum. Furthermore, in both cases, we also need to estimate Elo(100),
as defined in Definition 1. That can be done with high precision with
a relatively low number of games, and during that calculation, we can
also get some approximation for ∆θ(i).

Then we used formulae (18) and (19) to run simulations with 1, 4, 16
and 64 parameters and 200000 iterations, where in all cases, the total
distance from the optimum was 2 Elo points at the beginning of the

simulation. We discuss the choice for c
(i)
N later in the concluding section.

We repeated each run 50 times to reduce statistical errors. The obtained
results are presented in Table 1.

79

IVAN IVEC IVANA VOJNOVIĆ

Method
Elo gain mean / standard deviation

1 parameter 4 parameters 16 parameters 64 parameters

SPSA 1.99944 / 0.00071 1.9929 / 0.0044 1.9048 / 0.0331 1.2616 / 0.1159
BSPSAS 1.99970 / 0.00042 1.9951 / 0.0035 1.9333 / 0.0256 1.2525 / 0.1093
BSPSA 1.99968 / 0.00044 1.9953 / 0.0033 1.9303 / 0.0243 1.2683 / 0.1054

Table 1

We see that under perfect simulator conditions when parameters are
independent and parabolically behaved around the optimum, there is
basically no difference between BSPSAS given by (9),(10) and BSPSA
given by (14)–(16). So, for tuning a large number of parameters (> 100),
where speed could be crucial, BSPSAS seems like a great choice, but for
tuning a lower number of parameters, we still prefer BSPSA. We see
that BSPSA(S) comes closer to the optimum (up to more than 40%)
than SPSA, and the closer to the optimum we are, the more significant
the difference is. BSPSA(S) is also more stable, with a lower standard
deviation of the measurements. The difference is low for 64 parameters,
but it seems that 200000 iterations are simply not enough in that case.

Finally, we put our method to the real test. We modified 29 parameters
in the Stockfish chess engine to obtain an engine that is around 180 Elo
weaker than the original Stockfish. Then we tried to tune those param-
eters with 100000 iterations using both SPSA and BSPSA and using
formulae (18) and (19) to calculate input values for each tuner. Now
the real chess games were played with 5 + 0.05 time control (5 seconds
for the whole game plus 50 milliseconds increment after each move – the
maximum we could afford with our hardware). After tuning with SPSA,
an engine was around 64 Elo weaker than the original Stockfish, while
tuning with BSPSA brought him to −50 Elo compared to the original
Stockfish, which is more than 20% closer to the optimum than the re-
sult obtained with SPSA. Moreover, we noticed that one parameter got
stuck in the local optimum. After modifying that single parameter to
its original value, we were around −22 Elo points for SPSA and around
−15 Elo points for BSPSA.

4 Conclusion

An improvement was found over the classical SPSA method. Moreover,
we believe that further improvements are possible because we used the

same rule (17) for updating c
(i)
k which has some side effects. Namely, if

c
(i)
k values are too large and parameter behavior around an optimum is

80

BAYESIAN STATISTICS APPROACH TO CHESS ENGINES OPTIMIZATION

asymmetrical, we shall miss the optimum no matter how many iterations

our algorithm takes. On the other hand, if c
(i)
k values are too small, an

algorithm will have slow progress and likely get stuck in the local opti-
mum. The following picture shows an Elo dependence of one parameter
that got stuck in the red region during our tuning tests.

θ

Elo

−10

−20

−30

−40

10 20 30

Figure 1: Behaviour of one critical parameter

Here is an idea for future work: to develop an algorithm that will change

c
(i)
k values intelligently, trying to distinguish between local and global

optima. We believe that such algorithms could then be applied in many
research areas, including training of neural networks and some strictly
deterministic problems like finding optima of functions of several (many)
variables.

Acknowledgements. This work has been supported in part by the
Croatian Science Foundation under the project 2449 MiTPDE. The sec-
ond author acknowledges the financial support of the Ministry of Educa-
tion, Science and Technological Development of the Republic of Serbia
(Grant No. 451-03-68/2020-14/ 200125). We are thankful to Professor
Nataša Krklec–Jerinkić for her feedback and valuable discussions.

References

[1] Bolstad W.M., Introduction to Bayesian Statistics, 2nd edition,
John Wiley & Sons, 2007.

[2] Ciarlet P.G., Introduction to numerical linear algebra and optimi-
sation, Cambridge University Press, 1989.

[3] Computer Chess Rating Lists, available at
http://ccrl.chessdom.com/ccrl/4040.

[4] Elo rating system, available at
https://en.wikipedia.org/wiki/Elo rating system.

81

IVAN IVEC IVANA VOJNOVIĆ

[5] Frazier P. I., A Tutorial on Bayesian Optimization, arXiv:
1807.02811v1, (2018).

[6] Spall J.C., A stochastic approximation technique for generating
maximum likelihood parameter estimates. In: Proceedings of the
American Control Conference, 1987, pp. 1161–1167.

[7] Spall J.C., Multivariate stochastic approximation using a simulta-
neous perturbation gradient approximation, IEEE Trans. Automat.
Contr. 37 (1992), 332–341.

[8] Spall J.C., Implementation of the Simultaneous Perturbation Algo-
rithm for Stochastic Optimization, IEEE Trans. Aerosp. Electron.
Syst. 34 (3) (1998), 817–823.

[9] SPSA Tuner and its variants, available at
https://github.com/IIvec/spsa-1/tree/bspsa.

[10] SPSA Tuner for Stockfish Chess Engine, available at
https://github.com/zamar/spsa.

[11] Stockfish Testing Framework, available at
https://tests.stockfishchess.org/tests.

[12] Top Chess Engine Championship, available at
https://tcec–chess.com.

[13] L. Wall, T. Christiansen T and J. Orwant, Programming Perl, 3rd
edition, O’Reilly, 2000.

Ivan Ivec
University of Zagreb, Faculty of Metallurgy, Aleja narodnih heroja 3,
Sisak 44000, Croatia
E-mail address: iivec@simet.unizg.hr

Ivana Vojnović
University of Novi Sad, Faculty of Sciences, Department of Mathematics
and Informatics, Trg Dositeja Obradovića 4, Novi Sad 21000, Serbia
E-mail address: ivana.vojnovic@dmi.uns.ac.rs

82

	Introduction
	Theoretical development of a new method
	Experimental results
	Conclusion

