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Abstract

We study algebraic systems MΓ of free semigroup structure, where Γ
is a well ordered finite alphabet, discovered in 1970s within the The-
ory of Electric Circuits by Miro Šare, and finding recent applications in
Multivalued Logic, as well as in Computational Linguistics. We provide
three simple axioms (reversion axiom (1) and two compression axioms (2)
and (3)), which generate the corresponding equivalence relation between
words. We also introduce a class of incompressible words, as well as the
quotient Šare system M̃Γ. The main result is contained in Theorem 1,
announced by Šare without proof, which characterizes the equivalence
of two words by means of Šare sums. The proof is constructive. We
describe an algorithm for compression of words, study homomorphisms
between quotient Šare systems for various alphabets Γ (Theorem 4), and

introduce two natural Šare categories Ša(M) and Ša(M̃). Quotient Šare
systems are regular semigroups, but not inverse semigroups.

Keywords: Šare algebraic systems or M -systems, jorbs, free semigroups over

alphabets, Šare’s sum, compression of jorbs, regular semigroups, Šare’s cate-

gories
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1 Introduction

In this paper we describe a class of algebraic systems MΓ (depend-
ing on a well ordered alphabet Γ), introduced in 1970s by Miro Šare
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(1918–2005) in [6, 7]. Here are a few examples of well ordered alpha-
bets stemming from Arithmetic, Linguistics, and Electrical Engineering:
(a) Γ = {0, 1, . . . , 9}, (b) Γ = the set of letters of the Latin alphabet,
(c) Γ = {a, b, c}, with a < b < c, and C = aa, R = bb and L = cc,
where C, R, and L stand for capacitance, resistance and inductance,
respectively. For motivations originating from Electrical Engineering,
and in particular, for compression axioms (2) and (3) provided below
(relevant for Šare’s algebraic system MΓ introduced in Definition 1), see
the Introduction in [1]. This enables to qualitatively represent electrical
networks using words with an even number of letters from Γ = {a, b, c}.
Two letters are needed for the representation of C, R and L since each
of the corresponding electrical elements (capacitor, resistor, and induc-
tor) has two nodes. Applications in Computational Linguistics and in
Multivalued Logic can be seen in the rest of the indicated paper.

The main result of this paper is stated in Theorem 1. It characterizes the
equivalence abcd ∼ ad in terms of a suitable alternating sum introduced
by Šare, which is easy to compute. Theorem 1 was announced by Miro
Šare in [8, Theorem 1, case 1.9], but without proof. The proof provided
here is constructive, in the sense that if the Šare sufficient condition in
Theorem 1 is true, then we not only have equivalence, but we know which
admissible substitutions (based on compression/decompression axioms
(2) and (3) below) one has to apply in order to achieve it.

Theorem 1 enables us to characterize incompressible words in MΓ; see
Theorem 3. Incompresssibility of a word is defined in terms of mini-
mizing its length among all the words equivalent to it; see Definition 5.
In Proposition 4 we show that the Šare quotient semigroups M̃Γ do not
belong to the class of inverse semigroups (a classical treatise on inverse
semigroups is, e.g., [5]). We also provide a compression algorithm.

The paper is organized as follows. In Section 2 we introduce basic defi-
nitions and establish some auxilliary results. In Section 3 we define the
Šare sums and prove our main result stated in Theorem 1. Section 4
discusses the problem of maximal compression of jorbs. In Section 5 we
introduce four Šare categories. In the Appendix we complete the proof
of Theorem 1.

2 Basic definitions and auxilliary results

By a well ordered alphabet (also called alphabet, for short) we mean any
well ordered nonempty set, denoted by (Γ,≤). The elements of Γ are
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ŠARE’S ALGEBRAIC SYSTEMS

called letters. For simplicity, we assume that the alphabet Γ is finite.

Definition 1. By MΓ, we denote the set of all words w = α1 . . . α2n,
consisting of an even number of letters αk ∈ Γ (in arbitrary order) from
the alphabet Γ, where k = 1, . . . , 2n.

Note that, according to this definition, the alphabet Γ is clearly not con-
tained in MΓ, and moreover, these two sets are disjoint.

We introduce the usual binary operation of concatenation of words in
MΓ, which is obviously associative. We denote it by x · y or just by xy,
for any two words x and y in MΓ. Thus, MΓ becomes a free semigroup
of rank n, where n = |Γ|. This semigroup (satisfying the accompanying
axioms (1), (2) and (3)) was introduced in this generality by Šare in [6]
(in the context of the two-letter alphabet) already in 1970 in [7].

For any given letter α ∈ Γ and for any positive integer k, we define αk

as concatenation of k copies of α. The expression αk can be contained
in a larger word w ∈ MΓ, so that k does not have to be even. We
can analogously define wk for any word w ∈ MΓ. The length of any
word w = x1 . . . xn ∈ MΓ (where x1, . . . , xn ∈ Γ), denoted by `(w), is
`(w) = n.

We shall occasionally need the set words consisting of k letters,

Γk = {α1 · · ·αk : α1, . . . , αk ∈ Γ},

where k is a positive integer, not necessarily even. Clearly,

MΓ =

∞⋃
k=1

Γ2k.

It will be also useful to consider the semigroup of all words (not necessar-
ily of even length): WΓ =

⋃∞
k=1 Γk. (The set WΓ is often denoted by Γ+

in the literature.) Here, MΓ ⊂WΓ, and moreover, MΓ is a subsemigroup
of WΓ with respect to concatenation. Also, MΓ is a language over the
prescribed alphabet Γ; see e.g. [2, 3, 4] for a more detailed information.

Any k-word wk ∈ Γk is said to be a subword of a given word w ∈MΓ, if
either wk = w, or w can be obtained from wk by concatenating on the
left of wk, or on the right, or both. By saying that x is a k-word, we
mean that its length is any positive integer k, not necessarily even.
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The elements of the set Γ2 consisting of the product of any two letters
are called the atoms (or generators) of the Šare system MΓ. In other
words, the set of atoms in MΓ is

Γ2 = {αiαj : αi, αj ∈ Γ}.

Each word w ∈MΓ can be obtained as the product of atoms. However,
the atoms in the decomposition are not uniquely determined by w. For
example, in Figure 4, we have that aa cb = cb bc in M{a,b,c}.

We can concatenate w1 ∈ Γk and w2 ∈ Γl, to obtain w1w2 ∈ Γk+l.
We can perform concatenation of consecutive subwords of a given word
w ∈MΓ, and this operation is also associative. Words w ∈ Γk for odd k
are called quarks. Letters from the alphabet Γ are also quarks.

2.1 Reversion and (de)compression of words

It will be convenient to introduce the reversal of k-words, defined as the
function E : Γk → Γk given by

E(γ1γ2 . . . γk) = γk . . . γ2γ1,

for any word w = γ1γ2 . . . γk ∈ Γk. We also write w := E(w), for
short. This operation can be in a natural way extended to reversion
E : MΓ →MΓ.

In the following definition, we introduce the notion of Šare’s system
MΓ (also called m-system, according to the original terminology by M.
Šare (

∫
á:re). It first appeared in 1973 in his doctoral dissertation [6].

See also [8]. The crucial role is played by the notion of equivalence ∼
among words of even length, which Šare denoted as a mere equality, i.e.
by =. We prefer to denote it here by ∼, for several obvious reasons.
One of them is that the compression axiom αββγ ∼ αγ appearing in
Eq. (3) below, if written as αββγ = αγ, would inevitebly imply that
`(αββγ) = `(αγ), i.e. the contradiction 4 = 2. The equivalence between
words generates a relation of equivalence on the set MΓ; see Definition 4
below.

Definition 2. Let Γ be a well ordered alphabet. We say that MΓ is
a Šare system generated by Γ if it fulfills the following three properties
(Šare’s axioms) :
(a) For any letter γ ∈ Γ and for any k-word w ∈ Γk, where k is an even
number, we have the following reversion property:

γwγ ∼ γwγ. (1)
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(b) For any two letters α, β ∈ Γ, the first compression law is true:

αβα ∼ α, (2)

where we understand that the combination αβα is a subword of a given
word w ∈MΓ. (See also Remark 2 below.)

-

6 rr rr β

Γ

α
β

γ

-

6 rrr r
β

γ

Γ

α

β

Figure 1: The product αβ2γ, for β between α and γ, is equivalent to αγ. The
figure is selfexplanatory, corresponding to cases of increasing and decreasing
sequences (α, β, β, γ) in the product. See Eq. (3).

(c) For any ordered triple (α, β, γ) of letters in Γ (that is, such that either
α ≤ β ≤ γ or α ≥ β ≥ γ; see Figure 1), the second compression law is
true:

αβ2γ ∼ αγ, (3)

where we understand that the combination αβ2γ is a subword of (or equal
to) a given word w ∈MΓ.

The following simple result shows that the relation ∼ behaves well with
respect to the product of words.

Lemma 1. For any four words x1, x2, y1, y2 ∈WΓ such that xx1, yy1 ∈
MΓ, we have that

x1 ∼ y1 and x2 ∼ y2 =⇒ x1y1 ∼ x2y2.

Remark 1. In a concrete situation, compression property (2) can be
used either in the sense of compression (i.e., αβα 7→ α), or in the sense
of decompression (i.e., α 7→ αβα). This should be clear from the context,
and in both cases we most often say to have used compression property
(2), for simplicity. For example, in αβαγ ∼ αγ ∼ αγαγ, we have
compressed αβα to α in the first equivalence, and then decompressed γ to
γαγ in the second, where α, β, γ ∈ Γ. Similarly for compression property
(3). Also, remark that compression property (2) involves quarks.

Remark 2. Note that if α, β ∈ Γ, then αβα /∈ MΓ, so that equivalence
in (2) is not equivalence of words in MΓ. For any letter ε ∈ Γ, the first
compression property in (2) implies that εαβα ∼ εα, which is equivalence
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of words in MΓ. Properties (a), (b), and (c) are used within larger words
in MΓ. For example, for any three words w1, w, w2 ∈ MΓ, property (a)
applies as follows: w1γwγw2 ∼ w1γwγw2, and this is equivalence of
words in MΓ; etc. It is worth noticing that the expressions αβα and
αβ2γ appearing in (de)compression axioms (2) and (3) are invariant
with respect to reversion.

The following useful result shows that if two words in MΓ are equivalent,
then their initial letters must coincide, as well as their terminal letters.

Proposition 1. For any four letters αj , βj ∈ Γ, where j = 1, 2, and for
any x, y ∈MΓ, the following boundary property is true:

α1xβ1 ∼ α2yβ2 ⇒ α1 = α2 and β1 = β2. (4)

Proof. Note that the property stated in Eq. (4) is true for axioms (1),
(2), and (3), appearing in Definition 2. Since each equivalence of words is
obtained by consecutive use of these three axioms, the claim follows.

Definition 3. (Jorbs and jorbology) According to terminology introduced
by M. Šare in [8], the elements (words) in MΓ are called jorbs (to be
pronounced as yorbs). The set MΓ is a semigroup with respect to con-
catenation.

The product of any two quarks is clearly a jorb, while the product of
any jorb and a quark (and vice versa) is a quark.

Remark 3. The notion of jorb, introduced in the above Definition 3,
is obtained by reversion as E(broj) = jorb. Here, broj – number (in
Croatian), with Γ taken as the usual Latin alphabet. For example,
E(number) = rebmun. In this sense, we can speak about Šare’s theory
of jorbs, or of the jorbology (the analog of which in English would be
‘rebmunology’).

The following lemma is useful in immediate compression of the words.
The last equivalence in (5) below, for n = 2 shows that the product of
any two elements of the alphabet (i.e., of any atom) is idempotent.

Lemma 2. For any two positive integers k and l and any two letters
α, β ∈ Γ, we have that

αkβαl ∼ αk+l−1.

In particular, α2βα2 ∼ α3.
For for any positive integer n, we have that

α2n ∼ α2, α2n+1 ∼ α, (αβ)n ∼ αβ. (5)
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Proof. The first claim follows from αkβαl ∼ αk−1(αβα)αl−1 ∼ αk+l−1.
(In case when k = 1 or l = 1, we agree that the corresponding term α0

is in fact absent.)

The second equivalence in (5) follows by letting k = l = n. The first
equivalence follows by multiplying the second one by α.

The last equivalence in (5) for n = 2 follows by multiplying Eq. (2) by
β from the right. The case when n ≥ 2 is obtained by mathematical
induction.

The following lemma is a generalization of (de)compression property (3).

Lemma 3. Let a finite ordered sequence of letters a ≤ γ1 ≤ · · · ≤ γk ≤ b
be given in Γ. Then,

aγ2
1 . . . γ

2
kb ∼ ab. (6)

The same conclusion holds if we reverse the order of the sequence: a ≥
γ1 ≥ · · · ≥ γk ≥ b.

Proof. The proof follows by mathematical induction. For k = 1, the
claim is equivalent to axiom (3). Assume that the claim in the lemma is
true for some positive integer k. Then for γk+1 such that γk ≤ γk+1 ≤ b
we have that

aγ2
1 . . . γ

2
kγ

2
k+1b = (aγ2

1 . . . γ
2
kγk+1)γk+1b ∼ (aγk+1)γk+1b = aγ2

k+1b ∼ ab,

where we have used the inductive hypotheses in the first equivalence, and
compression axiom (3) in the second. Analogous proof can be performed
in the case of reverse order of letters.

-

6 r r
r
β

Γ

α

γ

-

6 rr
r
β

Γ

α

γ

Figure 2: The quark αβγ appearing on the left, described in Lemma 4, is
equivalent to α2γ. The quark γβα on the right is equivalent to γα2.

In the following lemma, we say that a letter α is between letters β and
γ in Γ if either β ≤ α ≤ γ or γ ≤ α ≤ β. See Figure 2.
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Lemma 4. Let three letters α, β, γ be given in a well ordered alphabet
Γ satisfying (de)compression axioms (2) and (3). If α is between β and
γ, then

αβγ ∼ α2γ, γβα ∼ γα2.

Proof. Decompressing by (3), and then compressing by (2), we have that

αβγ ∼ α(βα2γ) = (αβα)αγ ∼ α2γ.

The second equivalence is proved in a similar fashion.

-

6

r r r r r r r

r r r r
β1 β2

βk−1
βk

Γ

a
γ1

γ2

γ3

γk−1

γk

b

q q q q q

Figure 3: Zizagging product a
(∏k

j=1 γjβj
)
b, described in Proposition 2, is

equivalent to ab. Horizontal axis indicates the order of letters in the product.

In Proposition 2 below, we compress the zizagging product in (7). See
Figure 3.

Proposition 2. (Zigzagging product) Let a finite ordered sequence of
letters a ≤ γ1 ≤ · · · ≤ γk ≤ b be given in Γ. Assume that a set of letters
{β1, . . . , βk} is given such that βj ≤ γj for each j = 1, . . . , k. Then (see
Figure 3),

a
( k∏
j=1

γjβj

)
b ∼ ab. (7)

An analogous claim holds if we reverse all inequalities in the assumptions.

Proof. First remark that, since γj is between βj and γj+1, then by
Lemma 4, γjβjγj+1 ∼ γ2

j γj+1. We proceed by inducton with respect
to k. From this we see by mathematical induction with respect to k that∏k
j=1 γjβj ∼

∏k
j=1 γ

2
j . The claim follows by using Lemma 3:

a
( k∏
j=1

γjβj

)
b ∼ a

( k∏
j=1

γ2
j

)
b ∼ ab.
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ŠARE’S ALGEBRAIC SYSTEMS

· aa ab ba bb
aa aa ab aa aabb
ab aa ab abba ab
ba ba baab ba bb
bb bbaa bb ba bb

Figure 4: Multiplication table of the atoms (modulo equivalence ∼)
of the Šare system M{a,b}. The set of atoms Γ2 is not a grupoid for
Γ = {a, b}. Among 16 products, four them are incompressible.

· aa ab ac ba bb bc ca cb cc
aa aa ab ac aa aabb aabc aa aacb aacc
ab aa ab ac abba ab ac abca ab abcc
ac aa ab ac acba ab ac acca accb ac
ba ba baab baac ba bb bc ba bb bacc
bb bbaa bb bc ba bb bc ba bb bbcc
bc bcaa bb bc ba bb bc bcca bccb bc
ca ca caab caac ca cb cabc ca cb cc
cb cbaa cb cc ca cb cbbc ca cb cc
cc ccaa ccab cc ccba ccbb cc ca cb cc

Figure 5: Multiplication table of the atoms (modulo ∼) of the Šare
system M{a,b,c}. Note, for example, that aa cb = a(acb) ∼ aabb, ca bc =
(cab)c ∼ cb bc. Among 81 products, 27 of them are incompressible.

Since the multiplication of jorbs in Šare system MΓ, generated by a
given well ordered alphabet Γ reduces to multiplication of its atoms, it
is meaningful to have in mind the corresponding multiplication table of
the atoms. Taking into account the axioms of reversion (1) and com-
pression (2) and (3), we see that that the product of two atoms in MΓ

does not have to be an atom already in the case of the well ordered
alphabet consisting of two letters, Γ = {a, b}; see Figure 4. Indeed, we
have that the products are maximally compressed (here, as well as in
the following table, reversion axiom (1) is not needed). In other words,
the set of atoms is not even a groupoid under the multiplication.

In the case of the three element well ordered alphabet Γ = {a, b, c},
we have the multiplication table of 9 corresponding atoms shown in
Figure 5 Here, we also needed just the last two of the Šare axioms (i.e.,
compression axioms (2) and (3)) for the associated system MΓ are used.
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For example, acba ∼ abba, using Lemma 4. Similaraly, abca ∼ abba,
etc. It is clear that the multiplication of atoms (and more generally, of
jorbs) is associative, since the multiplication of letters in the alphabet is
associative as well.

Remark 4. Note that the multiplication table of the atoms in the Šare
system M{a,b} is embedded into the one corresponding to M{a,b,c}; see
Figures 4 and 5. Also remark that M{a,b} can be identified with M{a,c},
since these two subsemigroups of M{a,b,c} are clearly isomorphic. More
generally, for any two alphabets Γ1 and Γ2, such that |Γ1| < |Γ2|, it is
clear that the Šare semigroup MΓ1

is isomorphic to a subsemigroup of
MΓ2

, i.e., MΓ1
can be embedded into MΓ2

.

Remark 5. (Complete noncommutativity; open problem) From the mul-
tiplication tables shown in Figures 4 and 5, we notice that corresponding
Šare systems MΓ are completely noncomutative in the following sense:
for any two atoms x, y ∈ MΓ, such that x 6= y, we have that xy 6= yx.
It would be interesting to know if analogous property holds for any well
ordered finite alphabet Γ.

2.2 Valuation and distance of letters of an alphabet

By a valuation of letters in an alphabet Γ we mean any integer-valued
function v : Γ → Z which is increasing, and the absolute value of the
difference of valuations of any two consecutive letters in the alphabet is
equal to 1. It is clear that a valuation v of a given alphabet Γ is deter-
mined uniquely up to an additive integer constant.

For example, the letters α, β, γ,. . . of the Greek alphabet Γ can be
valuated with 1, 2, 3,. . . (but also with 0, 1, 2,. . . ). The alphabet
Γ = {0, 1, . . . , 9} can be valuated by the values of the alphabet itself
(but also with values translated by 1, i.e., with 1, 2, . . . , 10).

For a given alphabet Γ, we define the distance δ(a, b) between any two
letters a, b ∈ Γ, by

δ(a, b) = |v(a)− v(b)|.

It is clear that the distance does not depend on the choice of the valua-
tion of the alphabet Γ. Also, 0 ≤ δ(a, b) ≤ |Γ| − 1, and the bounds for
δ(a, b) are optimal. Furthermore, δ(a, b) can achieve all of the values in
the set [0, |Γ| − 1] ∩ Z.

The distance δ is clearly a metric on the alphabet Γ. It is obvious that in
the triangle inequality, we have equality (that is, δ(a, c) = δ(a, b)+δ(b, c))
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if and only if the value of v(b) is between the values of v(a) and v(c) (by
this we mean that v(b) ∈ [v(a), v(c)] if v(a) ≤ v(b), or v(b) ∈ [v(c), v(a)]
if v(c) ≤ v(a)).

Remark 6. It is sometimes convenient to identify the letters of an al-
phabet Γ with the set of its valuations, so that Γ ⊂ Z. For example, n
is the cardinality of Γ, then we can write Γ = {1, 2, . . . , n}. This will be
done in the proof of Theorem 1 below.

3 Šare’s sum of jorbs

To any four-letter subjorb abcd of a given jorb w ∈MΓ we associate the
following important numerical expression λ(abcd), that we call Šare’s
sum of abcd:

λ(abcd) := δ(a, b)− δ(b, c) + δ(c, d). (8)

The next theorem shows (somewhat surprisingly) that it is possible to
characterize equivalence abcd ∼ ab by means of the indicated alternating
sum of distances appearing in (8). This result was first published in [8,
Theorem 1, case 1.9, p. 19], but without the proof.

Theorem 1. (Šare, see [8, Theorem 1, case 1.9]) Assume that com-
pression properties (2) and (3) hold in MΓ. Then, for any four letters
a, b, c, d ∈ Γ we have that

δ(a, b)− δ(b, c) + δ(c, d) = δ(a, d) ⇐⇒ abcd ∼ ad. (9)

We postpone the proof of this theorem until after Lemma 6 below. It
will be convenient to extend the definition of Šare’s sum λ to any jorb
a1α2 . . . , ak ∈ MΓ, where aj ∈ Γ for all j = 1, 2, . . . , k (recall that k is
even):

λ(a1α2 . . . ak) := δ(a1, a2)− δ(a2, a3) + · · ·+ δ(ak−2, ak−1)− δ(ak−1, ak).
(10)

The alternating sum on the right-hand side of (10) has k − 1 (i.e., odd
number of) terms. Note also that λ(a1a2) = δ(a1, a2). Thus, Eq. (10)
defines the function

λ : MΓ → Z, λ(a1α2 . . . ak) :=

k−1∑
j=1

(−1)j−1δ(aj , aj+1).

Šare’s sum λ for any jorb in MΓ was introduced in [8, Definition 11 on
p. 23], but with the opposite signs on the right-hand side of (10) then

11
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we have here. Of course, this slight change is inessential.

The following lemma shows that applying axioms (3), (2), and (1) to a
jorb, does not change the Šare sum of the jorb.

Lemma 5. Let an arbitrary 4-word abcd ∈MΓ be given, where a, b, c, d ∈
Γ. Then we have the following:

(i) if b = c and a ≤ b ≤ d, then λ(abcd) = δ(a, d);

(ii) if a = c, then λ(abcd) = δ(a, d); the same for b = d;

(iii) if w ∈ MΓ is any word, then λ(awa) = λ(awa). (Furthermore,
λ(w) = λ(w).)

Proof. The proof follows easily by direct inspection.
(i) If b = c and a ≤ b ≤ d, then

λ(abcd) = λ(abbd) = δ(a, b)− δ(b, b) + δ(b, d) = δ(a, b) + δ(b, d) = δ(a, d).

(ii) If a = c, then abcd = abad, so that

λ(abcd) = λ(abad) = δ(a, b)− δ(b, a) + δ(a, d) = δ(a, d);

the same for b = d.

(iii) If w = α1α2 . . . αk−1αk ∈ MΓ is any word (with k even), then
λ(awa) = δ(a, α1)−δ(α1, α2)+ · · ·−δ(ak−1, αk)+δ(αk, a). This expres-
sion is clearly equal to

λ(awa) = λ(aαkαk−1 . . . α2α1a)

= δ(a, αk)− δ(αk, αk−1) + · · · − δ(a2, α1) + δ(α1, a).

The following lemma follows easily from the above Lemma 5.

Lemma 6. For any two jorbs x, y ∈MΓ, if x ∼ y then λ(x) = λ(y).

Proof. It suffices to note that y is obtained from x using axiom of rever-
sion (1), and axioms of (de)compression (2) and (3) finitely many times.
The claim follows from Lemma 2.

Our proof of the sufficiency part of Theorem 1, provided below in part
(a), is constructive. More precisely, the construction of the desired se-
quence of equivalence ab ∼ · · · ∼ abcd (or vice versa), using axioms of
(de)compression (2) and (3) only, is in fact an algorithm consisting of 24
cases.
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Proof of Theorem 1. Part (a). We indicate the proof of the sufficiency
part, i.e., of implication ⇒. Assume without loss of generality (see Re-
mark 6) that Γ = {1, 2, . . . , n}, where n = |Γ|.

For a given ordered quadruple (a, b, c, d) of integers in Γ, we have 4! = 24
possible orders indicated by the associated permutations, so that we have
to consider the corresponding 24 cases.

Case 1. Assume that a ≤ b ≤ c ≤ d. Then, the condition δ(a, b) −
δ(b, c) + δ(c, d) = δ(a, d) reads as (b− a)− (c− b) + (d− c) = d− a, so
that b = c. Therefore, abcd ∼ ab2d ∼ ad due to the compression property
(3). Recall that, here, b2 = bb is taken in the sense of concatenation.

Case 2. If b ≤ a ≤ c ≤ d, then condition δ(a, b)−δ(b, c)+δ(c, d) = δ(a, d)
reads as (a − b) − (c − b) + (d − c) = d − a, i.e., a = c. Hence, from
compression property (2) we conclude that abcd ∼ abad ∼ ad.

Case 3. Assume that a ≤ c ≤ b ≤ d. Then, the condition δ(a, b) −
δ(b, c)+ δ(c, d) = δ(a, d) reads as (b−a)− (b− c)+(d− c) = d−a, which
is always fulfilled. Thus, using the compression properties (2) and (3),
we have that

ad ∼ abad ∼ abaccd ∼ abccaccd ∼ abcccd ∼ abcd.

Case 4. If d ≤ c ≤ b ≤ a, then condition δ(a, b)−δ(b, c)+δ(c, d) = δ(a, d)
reads as (a− b)− (b− c) + (c−d) = a−d, i.e., b = c, and hence, we have
an analogous situation to Case 1.

The remaining 20 cases are treated analogously. See the Appendix near
the end of this paper.

Part (b). In order to prove the converse implication (i.e., of ⇐), as-
sume that abcd ∼ ab. This means that, if we start with ab, then the
expression abcd is obtained from ab by applying axioms of reversion (1)
and compressions (2) and (3) finitely many times. The inital value of
λ(ad) = δ(a, d) is not changed after any such step, in light of Lemma 6.
This completes the proof of part (b), as well as the proof of the theo-
rem.

Now we describe a suitable algorithm for compressing any given jorb,
by means of its pseudocode. Let ω ∈ MΓ, `(ω) - length of a jorb, w[i] -
letter at position i in ω, ω[i : j] - slice, subjorb of ω from position i to j,
v() - valuation function, reverse(ω) - reversing string ω, ω.insert(i, ω′)
- function for insertion of subjorb ω′ at i-position of ω, append(ω′) -
appending subjorb into the list.

13
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Corollary 1. For any four letters a, b, c, d ∈ Γ we have that

abcd ∼ ad ⇔ dcba ∼ da.

Proof. If abcd ∼ ad, then by Theorem 1,

δ(a, b)− δ(b, c) + δ(c, d) = δ(a, d).

Writing this equality as

δ(d, c)− δ(c, b) + δ(b, a) = δ(d, a),

then again by Theorem 1 it follows that dcba ∼ da. The converse impli-
cation follows along the same lines.

Remark 7. Note that, if abca ∼ a2 for some three letters a, b, c ∈ Γ,
then by Corollary 1 we have that abca ∼ acba. But from reversion axiom
(1) we know that abca ∼ acba without any additional condition on the
expression abca.

Thanks to Theorem 1, we can derive the following consequences.

Corollary 2. Assume that a finite sequence of ordered quadruples of
letters

(aj , bj , cj , dj) ∈ Γ4, j = 1, . . . , k

is given, such that λ(ajbjcjdj) = δ(aj , dj) for each j. Then,

k∏
j=1

ajbjcjdj ∼
k∏
j=1

ajdj . (11)

Furthermore, if the following zigzagging condition is satisfied, a1 ≤ d1 ≤
d2 ≤ · · · ≤ dk−1 ≤ dk and aj+1 ≤ dj for all j = 1, . . . , k − 1, then

k∏
j=1

ajbjcjdj ∼ a1dk. (12)

Analogous claim holds also if we reverse all inequalities in the assump-
tions preceding Eq. (12).

Proof. The first claim follows immediately from Theorem 1. The second
claim follows from the first one, by rewriting the product appearing on
the right-hand side of (11) and then making use of Proposition 2:

k∏
j=1

ajdj = a1

( k−1∏
j=1

djaj+1

)
dk ∼ a1dk.

14
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In the following result we find the minimum and maximum of the set
λ(Γk) := {λ(w) : w ∈ Γk}, where k is even.

Proposition 3. Let k be any even positive integer. Then

minλ(Γk) = −(n− 1)
(k

2
− 1
)
, maxλ(Γk) = (n− 1)

k

2
.

Furthermore, the minimum and maximum are both achieved on precisely
two different jorbs from Γk, that are provided in the proof.

Proof. Let α := min Γ and ω := max Γ, i.e., α and ω are the first and
last letters of alphabet Γ, respectively. Let us define the folowing four
atoms:

A = αα, B = ωω, C = αω, D = ωα.

Then let us define an element of Γk of the form w′min := ABAB . . . ,
where A and B appear alternately, and the last atom in w′1 is A or B,
depending on whether k/2 is odd or even, respectively. Since δ(α, ω) =
n− 1, and this is the maximal possible distance of any two letters in Γ,
we see that the value

λ(w′min) = λ(ααωωααωω . . . ) = −
(k

2
− 1
)
δ(α, ω) = −

(k
2
− 1
)

(n− 1)

is the smallest possible. The same minimal value is obtained for w′′min :=
BABA . . . It is easy to see that w′min and w′′min are the only minima of
λ|Γk

.

Analogously, w′max := CDCD . . . and w′′max := DCDC . . . are the two
unique points of maxima of λ|Γk

.

Remark 8. If the product of two atoms A = ab and B = cd has non-
trivial compression (i.e., it is equivalent to an atom in this case), then
we must have that AB ∼ ad, in light of Proposition 1. So, due to Theo-
rem 1, the number of (nontrivially) compressible words in Γ4 is equal to
the number of solutions of equation λ(abcd) = δ(ad).

4 Incompressible jorbs

In the following two definitions, we introduce the notion of equivalence
among jorbs in MΓ, and the notion of incompressible jorbs.

15
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Definition 4. Two jorbs w1, w2 ∈MΓ are said to be equivalent, denoted
by w1 ∼ w2, if w2 can be obtained from w1 by consecutive use of the
axiom of reversion (1) and of the two axioms of compression (2) and
(3). This relation is clearly a relation of equivalence on the Šare system
MΓ. For each jorb w ∈MΓ, we denote by

[w] = {w′ ∈MΓ : w′ ∼ w}

the corresponding equivalence class.

It is natural to define the quotient Šare system M̃Γ as

M̃Γ = MΓ/∼ = {[w] : w ∈MΓ}.

It is also a semigroup, with respect to multiplication of classes de-
fined via concatenation of their representatives: [x][y] = [xy], for any

[x], [y] ∈ M̃Γ. This multiplication is well defined, since it does not de-
pend on the choice of representatives. Indeed, if x ∼ x1 and y ∼ y1, then
clearly xy ∼ x1y1. In other words, [x] = [x1] and [y] = [y1] imply that
[xy] = [x1y1]. Note also that if x is a quark, then [x] is not well defined.

In the following proposition we show that each element of the form [ab] ∈
M̃Γ, generated by an atom ab ∈ Γ2, is regular (that is, for each [ab] ∈ M̃Γ

there exists [x] ∈ M̃Γ such that [ab] = [ab][x][ab]). The definition of
regular elements and regular semigroups can be seen in [2, p. 44] or in
[5, I.7.1 Definition on p. 33]. The concept of regularity was introduced
by John von Neumann (1936) in ring theory. The proposition also shows
that Šare quotient semigroups are neither regular nor inverse semigroups,
when |Γ| ≥ 2. The definition of general inverse semigroup can be seen
e.g. in [5, II.1.1 Definition on p. 71].

Proposition 4. Šare quotient systems M̃Γ are generated by idempotents.
All elements [ab] ∈ M̃Γ generated by the atoms ab ∈ Γ2 are regular. The

elements of the form [aabb] ∈ M̃Γ are neither idempotent nor regular for
a 6= b in Γ. Furthermore, Šare systems are neither regular nor inverse
semigroups for |Γ| ≥ 2.

Proof. To prove that elements of the form [ab] are idempotents, note that
the last equivalence in Eq. (5) implies that [ab]n = [ab] for all n ∈ N.
In particular, [ab]3 = [ab], so that [ab] is regular with [x] = [ab]. The
idempotency [aabb] for a 6= b follows from Theorem 2 below.

If a, b, c, d ∈ Γ are such that λ(abcd) = δ(ab), then according to Theorem
1 we have that abcd ∼ ad. In particular, [ab][cd] = [abcd] = [ad], and
hence,

[ab][cd][ab] = [ad][ab] = [adab] = [ab], (13)

16
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where in the last equality we have used compression axiom (2). On the
other hand,

[cd][ab][cd] = [cd][abcd] = [cd][ad] = [cdad] = [cd]. (14)

As we can see, if the alphabet Γ contains at least two elements, then for
any given element [ab] ∈ M̃Γ, we have multiple solutions [cd] ∈ M̃Γ sat-
isfying simultaneously equations [ab][cd][ab] = [ab] and [cd][ab][cd] = [cd]
appearing in (13) and (14). This follows immediately from the proof
of Theorem 1; see also the Appendix. Consequently, the Šare quotient
semigroup is not an inverse semigroup.

Alternative (and more direct) proof. Let a and b be any two different

letters from the alphabet Γ, and let us define x = [aa] ∈ M̃Γ. Then the

following system with y ∈ M̃Γ as an unknown,

xyx = x and yxy = y

appearing in the definition of general inverse semigroup, possesses two
obvious different solutions y = [aa] and y = [ab]. Indeed, for y = [aa]
we have that xyx = yxy = [aa]3 = [(aa)3] = [aa] = x = y, where we
have used the last equivalence in Eq. (5) of Lemma 2. If y = [ab], then
the compression axiom (2) implies that xyx = [aa ab aa] = [aa(aba)a] =
[a3a] = [aa] = x, and yxy = [ab aa ab] = [(aba)a2b] = [a3b] = [ab] = y.

Consequently, M̃Γ is not an inverse semigroup.

It is of obvious interest to find the ‘best’ representative of any given class
[w] ∈ M̃Γ, in the sense of minimizing the length representatives, i.e., of
`(w). For this reason, we now pass to the definition of incompressible
jorbs. (Šare uses the term ‘canonical jorb’ instead; see [7, Definition 019
on p. 6].)

Definition 5. We say that a jorb w ∈MΓ is incompressible, if its length
`(w) is minimal in [w], that is,

`(w) = min{`(w′) : w′ ∼ w}.

It is interesting to note that in the case of the alphabet Γ = {a, b}
consisting of two letters only, the incompressible jorb wzip equivalent to
a given jorb w ∈MΓ is uniquely determined by w; see [7, Theorem 05 on
p. 6]. According to [7, Theorem 04 on p. 6], the set of all incompressible
words w of the Šare system M{a,b} can be characterized as follows:

(i) either w is an atom (that is, equal to aa, ab, ba, or bb), or
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(ii) any two consecutive atoms appearing in w are mutually dual (the
dual of aa is bb, and vice versa, while the dual of ab is ba, and vice versa).
(See also Figure 4.)

An immediate consequence of this result is the following theorem.

Theorem 2. Let Γ = {a, b}. For any even positive integer k, we have
precisely four incompressible yorbs in Γk:

w1k = aa bb aa bb · · · ∈ Γk, w2k = ab ba ab ba · · · ∈ Γk,

w3k = ba ab ba ab · · · ∈ Γk, w4k = bb aa bb aa · · · ∈ Γk.

Equivalently, the set of incompressible jorbs in the Šare system M{a,b} is
equal {wik : k ∈ N, i = 1, 2, 3, 4}. All these jorbs are mutually nonequiv-
alent, that is, [wik] ∩ [wjl] = ∅, whenever (i, k) 6= (j, l). In particular,

the corresponding quotient Šare system is equal to M̃{a,b} = {[wik] : k ∈
N, i = 1, 2, 3, 4}.

Remark 9. (Open problem) In the notation of the above Theorem 2,
we see that [wik][wjl] = [wmn], for some m and n depending on i, k, j, l.
It is clear that

[wik]
2

=

{
[wi,2k] if k/2 is even,

[wi,2k−2] if k/2 is odd.

When i 6= j, we have massive cancellations. For example, [w14][w24] =
[w12]. It would be of interest to find explicit expressions of the functions
m = m(i, k, j, l) and m = m(i, k, j, l).

Remark 10. (Open problem) Assume that |Γ| = n. In the multiplica-
tion table of n2 atoms in Γ2, there are n4 products. What is the number
a(n) of irreducable products? According to Figures 4 and 5, we have that
a(2) = 4 and a(3) = 27.

In the sequel, it will be convenient to introduce the following notation.

Definition 6. For any jorb w ∈ MΓ, we let ∂−(w) and ∂+(w) be the
first and the last letter of w, respectively. The resulting functions ∂± :
MΓ → Γ are called left and right boundary functions or Šare’s boundary
functions.

We provide a pseudocode of an algorithm for compressing a given jorb
ω ∈ MΓ of arbitrary length. If n is the length of ω, that is, `(ω) = n,
then the complexity of this algorithm is of order O(n) when n → ∞.
This means that it is tractable.
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Algorithm 1 rvs(ω) - reversing, axiom (1); zip3(ω) - the first com-
pression low, axiom (2); zip4(ω) - the second compression low, axiom
(3); ext(ω) - the jorb’s expansions, Eq. (6)

1: Input for all functions jorb ω
2: Output list of jorbs for rvs() function, transformed jorb ω for all other

functions
3: RVS(ω):
4: rev list ← [ ]
5: for i = 1 to `(ω)− 1 do
6: for j = `(ω)− 1 to i+ 1 step −1 do
7: if (j− i is even) and (ω[i] = ω[j]) and (ω[i+1 : j] 6= ω[j : i] then)
8: rev list ← append (ω[0 : i] + reverse(ω[i : j]) + ω[j : `(ω)])

9: return rev list
10: zip3(ω):
11: i ← 0
12: while i < `(ω)− 2 do
13: if ω[i] = ω[i+ 2] then
14: ω = ω[0 : i] + ω[i+ 2 : `(ω)]
15: else
16: i ← i+ 1

17: return ω
18: zip4(ω):
19: i ← 0
20: while i < `(ω)− 3 do
21: if δ(ω[i], ω[i+1])−δ(ω[i+1], ω[i+2])+δ(ω[i+2], ω[i+3]) = δ(ω[i], ω[i+

3]) then
22: ω = ω[0 : i+ 1] + ω[i+ 3 : `(ω)]
23: i ← i− 1

24: i ← i+ 1

25: return ω
26: ext(ω):
27: for i = 1 to l(ω − 1) do
28: a ← v(ω[i]); b ← v(ω[i+ 1])
29: if a+ 1 < b then
30: k ← 1
31: for j = a+ 1 to b do
32: ω.insert(i+ k,Γ[j] + Γ[j])
33: k ← k + 1
34: i ← i + 1

35: if a > b+ 1 then
36: k ← 1
37: for j = b− 1 to a step −1 do
38: ω.insert(i+ k,Γ[j] + Γ[j])
39: k ← k + 1
40: i ← i + 1

41: return ω
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Here is the main progam.

Algorithm 2 Compress(ω) main program

1: while True do
2: ω′ ← zip3(zip4(ext(ω)))
3: ω′′ list ← rvs(ω′)
4: smaller ← False
5: for ω′′ in ω′′ list do
6: ω′′′ ← zip3(zip4(ω′′))
7: if `(ω′′′) = `(ω′) then
8: continue
9: else

10: ω ← ω′′′

11: smaller ← True
12: break
13: if smaller = False then
14: break
15: return ω

In the following theorem, we characterize all incompressible jorbs in MΓ.
We also introduce the set of all subjorbs z of a given jorb w for which the
boundary letters of z coincide, that is, ∂−(z) = ∂+(z) (so that z ∼ z, by
axiom (1), where z denotes reversion of z). By R(w) we denote the set
of jorbs wr that can be obtained from w by reversion of such subjorbs
z of w. (Note that the length of wr is left unchanged, i.e., `(wr) = `(w)
for all wr ∈ R(w).) In other words, the set R(w) is the set of all jorbs
that can be obtained from w by applying reversion axiom (1). The set
R(w) may be empty.

Theorem 3. (Incompressible jorbs in MΓ) The set of incompressible
jorbs in MΓ is equal to Γ2 ∪G where G is the set of jorbs w ∈ MΓ \ Γ2

such that for all possible subjorbs x of jorbs in {w} ∪ R(w), of length
equal to 4, we have that

λ(x) 6= δ
(
∂−(x), ∂+(x)

)
. (15)

Proof. It is clear that each of the atoms of MΓ (i.e., each element of Γ2)
is incompressible. Next, it suffices to note that by Theorem 1, condition
(15) is equivalent to incompressibility of x, since otherwise (i.e., if we had
equality in (15)), x would be compressible to ∂−(x)∂+(x) ∈ Γ2. Also note
that compression axioms (2) and (3) deal only with with subjorbs of w
of length at most 4.

Remark 11. For each w ∈ MΓ, there exists an incompressible jorb
wzip equivalent to it. Is wzip uniquely determined by w? In general, the
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answer is no. For example, if Γ = {0, 1, 2, . . . , 9}, then for w = 123221,
by using (de)compression axioms (2) and (3), we obtain two different
zipped (i.e., maximally compressed) jorbs:

w = 1(232)21 ∼ w′zip = 1221, w = 12(3221) ∼ w′′zip = 1231.

Of course, by transitivity we have that w′zip ∼ w′′zip.

In the following lemma, we say that a jorb wzip is a zipped jorb (or
maximally compressed jorb) with respect to a given jorb w ∈ MΓ, if
w ∼ wzip and wzip is incompressible.

Lemma 7. (a) If w′zip and w′′zip are any two zipped jorbs of a given
w ∈MΓ, then w′zip ∼ w′′zip.

(b) Furthermore, w1 ∼ w2 if and only if w1,zip ∼ w2,zip, where w1,zip is
any zipped jorb of w1, and w2,zip is any zipped jorb of w2

Proof. (a) Since w ∼ w′zip and w ∼ w′′zip, then by symmetry and tran-
sitivity of relation ‘∼’, we have that w′zip ∼ w′′zip. Claim (b) follows
immediately from (a).

Proposition 5. For any word w ∈ MΓ, the corresponding equivalence
class [w] ∈ M̃Γ is infinite.

Proof. Each letter α appearing in w can be decompressed to α2n+1 with
arbitrary positive integer n, using Eq. (5) in Lemma 2. Hence, if for
example w = αw′, then we have that {α2n+1w′ : n ∈ N} ⊂ [w].

According to terminology of Šare introduced in [8, p. 19], the set of all
words in MΓ of minimal length (that is, of length 2), is called the zero-
base of the semigroup MΓ. It coincides with the set of atoms of MΓ,
that is, with Γ2. Any given word w ∈MΓ can be obtained as a product
of atoms. Moreover, the order of the atoms in the product is uniquely
determined by w. Each atom is incompressible and idempotent (see the
last equivalence in Eq. (5) of Lemma 5).

Remark 12. The set of atoms Γ2 can be considered as a ‘derived’ al-
phabet for the Šare system MΓ. Note, however, that reversion and com-
pression rules described by Eqs. (1), (2), and (3) are formulated in terms
of elements of the primary alphabet Γ, and not of Γ2. This is the reason
of introducing the set of atoms of the semigroup MΓ of jorbs. See also
Remark 3. Furthermore, the set Γ2 is not closed under multiplication,
provided Γ consists of at least two letters; see Figure 4.
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Remark 13. (Open problem) For any even number k, find the number
I(n, k) of mutually nonequivalent incompressible jorbs in Γk, in depen-
dence with prescribed values of an even positive integer k and n = |Γ|.
For example, if k = 2, then this number is equal to I(n, 2) = n2, since
all the atoms in Γ2 are incompressible and mutually nonequivalent. For
k = 4, see Remark 8. If n = 2, then according to Theorem 2, we have
that I(2, k) = 4 for all k.

Remark 14. The Šare sum behaves nicely with respect to the product
of jorbs x and y ∈MΓ (see [8, p. 24]) :

λ(xy) = λ(x) + λ(y)− δ
(
∂+(x), ∂−(y)

)
.

Here, ∂± denote positive and negative boundary functions introduced in
Definition 6. Consequently, denoting by MΓ(c) the set of all w ∈MΓ for
which ∂−(w) = ∂+(w) = c, where c is a fixed letter from the alphabet Γ,
we have that the restriction λc = λ|MΓ(c) is homomorphism of semigroups
(MΓ(c), ·) and (Z,+), since δ(c, c) = 0:

λc(xy) = λc(x) + λc(y), for all x, y ∈MΓ(c).

Assuming that [x] = [y] (that is, x ∼ y), by Lemma 6 we know that
λ(x) = λ(y). Hence, homomorphism λc induces a homomorphism λ̃c :

M̃Γ(c) → Z, defined by λ̃c([x]) = λ(x), where M̃Γ(c) = {[x] : x ∈
MΓ(c)}. In other words, λ̃c([x][y])] = λ̃c([x]) + λ̃c([y]) for all [x], [y] ∈
M̃Γ(c).

5 Homomorphisms between Šare systems
and Šare’s categories

In this section we define homomorphisms between Šare semigroups, as
well as between the corresponding quotient semigroups. We also in-
troduce the associated cannonical Šare semigroups. They induce the
corresponding categories, that we briefly describe.

5.1 Homomorphisms, embeddings and isomorphisms
between Šare systems

Assume that two Šare systems MΓ1
and MΓ2

are generated by two finite
and well ordered alphabets Γ1 and Γ2. A function f : MΓ1 → MΓ2 is
said to be homomrphism of Šare systems if f(xy) = f(x)f(y) for all
x, y ∈ MΓ1

, and if x1 ∼ x2 in MΓ1
then f(x1) ∼ f(x2) in MΓ2

, for any
pair (x1, x2) (or, equivalently, [x1] = [x2] implies that [f(x1)] = [f(x2)]).
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It generates in a natural way a homomorphism f̃ : M̃Γ1
→ M̃Γ2

of cor-
responding quotient semigroups, defined by f̃([x]) = [f(x)].

If f̃ is a monomorphism of quotient semigroups, then we say that M̃Γ1
is

embedded into M̃Γ2
via f̃ , whereby we identify M̃Γ1

with f̃(M̃Γ1
), which

is a subsemigroup of M̃Γ2
. In this case we can write M̃Γ1

≤ M̃Γ2
.

The following diagram is commutative, in which πj : MΓj
→ M̃Γj

are
the canonical projections, defined by πj(xj) = [xj ], for xj ∈ MΓj

and
j = 1, 2:

MΓ1
MΓ2

M̃Γ1 M̃Γ2

f1

π1 π2

f̃1

Analogously for epimorphisms and isomorphisms. It is clear that the
two quotient Šare systems are isomorphic if and only if the correspond-
ing alphabets are equipotent. If the quotient semigroups M̃Γ1

and M̃Γ2

are isomorphic, we write M̃Γ1
' M̃Γ2

.

Any monotone function f0 : Γ1 → Γ2 (monotone with respect to well
orderings in the alphabets) induces in a natural way a homomorphism
f : MΓ1 → MΓ2 defined by f(a1 . . . ak) = f0(a1) . . . f0(ak) for all jorbs
a1 . . . ak ∈ Γk and for all even positive integers k. Monotonicity is needed
because of (de)compression axiom (3). It is clear that

f̃(M̃Γ1
) = M̃f0(Γ1),

where f0(Γ1) is the corresponding subalphabet of Γ2. And vice versa:

any homomorphism f̃ : M̃Γ1
→ M̃Γ2

is generated by uniquely deter-
mined monotone function f0 : Γ1 → Γ2. (Recall that the alphabets are
assumed to be well ordered.) If the function f0 is strictly monotone,
then the corresponding function f̃ is monomorphic, and we have that
M̃f0(Γ1) ≤ M̃Γ2 .

Assume that |Γ1| = |Γ2| = n. Then, there are precisely two different

isomorphisms f̃ : M̃Γ1
→ M̃Γ2

, generated by one increasing and one
decreasing bijection f0 : Γ1 → Γ2. More generally, we have the following
result.

Theorem 4. Assume that |Γ1| = n1, |Γ2| = n2. If n1 ≤ n2, then there

are precisely 2
(
n2

n1

)
monomrphisms f̃ : M̃Γ1

→ M̃Γ2
. For any two positive
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integers n1 and n2, the number of all homomorphisms f̃ : M̃Γ1
→ M̃Γ2

is equal to 2
(
n1+n2−1

n1

)
− n2.

Proof. To each subset of n1 elements of Γ2, we can assign uniquely deter-
mined (strictly) increasing function f0 : Γ1 → Γ2 with an image equal to
this subset. Therefore the number of increasing functions f0 is equal to(
n2

n1

)
. Analogously for the number of decreasing functions f0. Since each

such function f0 generates a monomorphism (and all of the monomor-
phisms are of this form), the first claim follows.

To prove the second claim, we first find the number of nondecreasing
functions f0 : Γ1 → Γ2. Given such f0, let mk be the cardinality of
the f0-preimage of the k-th element in Γ2, where k = 1, . . . , n2. Then
m1 + · · · + mn2 = n1. The number of nonegative integer solutions
(m1, . . . ,mn2

) of this equation is equal to the number of combinations
with repetition,

(
n1+n2−1

n1

)
, and this is the number of homomorphisms

f̃ : M̃Γ1 → M̃Γ2 generated by all nondecreasing functions f0. The num-
ber of functions f̃ generated by nonincreasing functions f0 is the same,
and the second claim follows. (Remark that constant functions f0 were
counted twice.)

We also introduce cannonical Šare system Mn defined as the Šare sys-
tem generated by the usual numerical alphabet {1, 2, . . . , n}, that is,
Mn := M{1,...,n}. It is clear that MΓ ' Mn if and only if |Γ| = n. By

M̃n we denote the corresponding cannonical quotient Šare systme, for
any n ∈ N.

We have the natural embedding in : Mn → Mn+1, generated by the
increasing injective map in : {1, . . . , n} → {1, . . . , n, n+1}, where in(j) =
j for all j = 1, . . . , n. In this way, we obtain an infinite sequence of
naturally embedded Šare systems,

M1 ≤M2 ≤ · · · ≤Mn ≤Mn+1 ≤ . . .

Analogously, each induced map ĩn : M̃n → M̃n+1 is a natural embedding

of M̃n into M̃n+1, so that we have an infinite sequence of subsemigroups:

M̃1 ≤ M̃2 ≤ · · · ≤ M̃n ≤ M̃n+1 ≤ . . .

5.2 Šare’s categories

We introduce the Šare category, denoted by Ša(M), the objects of which
are Šare systems MΓ for all possible well ordered finite alphabets Γ, while
the morphisms between the objects are homomorphisms between Šare
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systems. The corresponding quotient Šare category, denoted by Ša(M̃),

consists of all possible quotient semigroups of the form M̃Γ as objects
(for all possible well ordered finite alphabets Γ), and of all possible homo-
morphisms between them as morphisms. The associated two cannonical
Šare subcategories of Ša(M) and Ša(M̃) are denoted by Ša(M,N) and

Ša(M̃,N), respectively. All of them are subcategories of the category S
of all semigroups:

Ša(M,N) ⊂ Ša(M) ⊂ S, Ša(M̃,N) ⊂ Ša(M̃) ⊂ S.

We can easily build covariant functors between Šare categories. For ex-
ample, a natural covariant functor F : Ša(M,N) → Ša(M̃,N) that we
name Šare’s functor, consisting of the sequence (πn)n≥1 of projections

between the corresponding objects, as well as of the sequence (fn, f̃n)n≥1

of ordered pairs of the corresponding morphisms (i.e., homomorphisms
between Šare systems), is indicated in the following commutative dia-
gram:

M1 M2 · · · Mn Mn+1 · · ·

M̃1 M̃2 · · · M̃n M̃n+1 · · ·

f1

π1 π2

f2 fn−1 fn

πn πn+1

fn+1

f̃1 f̃2 f̃n−1 f̃n f̃n+1

5.3 Final remarks

In this paper, we have dealt with the set A0 of three axioms consisting
of reversion (1) and two (de)compressions (2) and (3). It generated the

Šare system MΓ = MΓ(A0) and the quotient system M̃Γ = M̃Γ(A0). In
future applications, for some particular classes of problems, it is possible
to envisige a different finite set A of axioms on MΓ, yielding a new Šare
system MΓ(A) and the corresponding quotient system M̃Γ(A), as well

as the associated Šare categories Ša(M,A) and Ša(M̃,A).

6 Appendix

The 24 cases indicated in the proof of Theorem 1 (corresponding to
its sufficiency part (a)) are discussed here. We note that their number
can be further reduced by half, since the (de)compression axioms (2)
and (3) are symmetric in the sense that if, for example, we reverse the
order of letters appearing in αβα, nothing is changed. Hence, Case 1
corresponding to a ≤ b ≤ c ≤ d is equivalent to the case with reverse
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order, i.e., d ≤ c ≤ b ≤ a, etc. Therefore, it suffices consider the 12
cases corresponding to a ≤ . . . and b ≤ . . . only, since the cases of the
form b ≤ . . . and d ≤ . . . have their symmetric counterparts among the
preceding two cases.

Case 1. Assume that a ≤ b ≤ c ≤ d. See Case 1 in the proof of
Theorem 1.

Case 2. Assume that a ≤ b ≤ d ≤ c. Condition in (9) reduces to b = c,
hence, abcd ∼ abbd ∼ ad, since b is between a and d (or, from b ≤ d ≤ c
it follows that b = d = c, so that abcd = ad3 ∼ ad, by Lemma 2).

Case 3. Assume that a ≤ c ≤ b ≤ d. See Case 3 in the proof of
Theorem 1.

Case 4. Assume that a ≤ c ≤ d ≤ b. Condition in (9) reduces to 0 = 0.
From d ∈ [c, b] (in the first equivalence) and d ∈ [a, b] (in the third
equivalence), by using decompression formula (3), we obtain that

abcd ∼ abd2cd ∼ abd2 ∼ ad2bd2 = ad(dbd)d ∼ ad3 ∼ ad.

Case 5. Assume that a ≤ d ≤ b ≤ c. Condition in (9) reduces to b = d.
Hence, abcd ∼ adcd ∼ ad.

Case 6. Assume that a ≤ d ≤ c ≤ b. Condition in (9) reduces to
c = d, so that (since d ∈ [a, b], using decompression property (3) in the
second equality below, and then compression property (2) in the last
equivalence),

abcd = abdd ∼ addbdd = ad(dbd)d ∼ ad3 ∼ ad.

Case 7. Assume that b ≤ a ≤ c ≤ d. See Case 2 in the proof of
Theorem 1.

Case 8. Assume that b ≤ a ≤ d ≤ c. Condition in (9) reduces to a = d.
Since a ∈ [b, c], we have that (see decompression property (2), used in
the equivlanece below)

abcd = abca ∼ abaaca = (aba)(aca) ∼ aa = ad.

Case 9. Assume that b ≤ c ≤ a ≤ d. Condition in (9) reduces to a = c,
so that abcd = abad ∼ ad.

Case 10. Assume that b ≤ c ≤ d ≤ a. Condition in (9) reduces to d = c,
so that

abcd = abd2 ∼ ad2bd2 = ad(dbd)d ∼ ad3 ∼ ad,

where we have used that d ∈ [b, a], along with decompression property
(3) and Lemma 2.
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Case 11. Assume that b ≤ d ≤ a ≤ c. Condition in (9) reduces to 0 = 0.
Since d ∈ [b, c] (used in the first equality, along with decompression
property (3)) and d ∈ [b, a] (used in the second equality), we have that

abcd = abd2cd ∼ abdd ∼ ad2bd2 = ad(dbd)d ∼ ad3 ∼ ad.

Case 12. Assume that b ≤ d ≤ c ≤ a. Condition in (9) reduces to
0 = 0. Since d ∈ [b, c], using decompression property (3), and then using
d ∈ [b, a], we obtain that

abcd = abd2cd = abd2 ∼ ad2bd2 = ad(dbd)d ∼ ad3 ∼ ad.
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[8] Šare, M., Jorbologija (Jorbology), Element, Zagreb 2000 (in Croat-
ian)

27



MARIO ESSERT DARKO ŽUBRINIĆ
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