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Abstract

The notion of coarsely n-to-1 maps between metric spaces was generalized
by Austin and Virk in [1] into the notion of coarsely finite-to-1 maps, which
are those maps f : X → Y between metric spaces such that for every R > 0
there exist S > 0 and m ∈ N so that the preimage of any subset C of
Y with diameter at most R can be covered by at most m subsets of X
with diameter at most S. In this paper we introduce an adjustment to this
definition by giving the number S > 0 first: given an S > 0, we say that
a map f : X → Y of metric spaces is coarsely S-finite-to-1 if for every
R > 0 there exists an m ∈ N such that the preimage of any subset C
of Y with diameter at most R can be covered by at most m subsets of
X with diameter at most S. We then show that for a global morphism
f : (Ξ,Ξ∞) → (Λ,Λ∞) of countable approximate groups, which is also proper,
we have that f : Ξ∞ → Λ∞ is a coarsely (diam(ker f))-finite-to-1 map, and
each k-component fk = f |Ξk : Ξk → Λk is a coarsely (diam(ker f ∩ Ξ2k))-
finite-to-1 map.
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1 Introduction
The notion of an n-to-1 function, often used in topology, is referring to a
function between topological spaces for which every point in codomain has
at most n points contained in its preimage, that is, each fiber of this function
contains at most n points.

A coarse geometry generalization of this notion is a coarsely n-to-1 func-
tion, introduced by T. Miyata and Ž. Virk in [7], defined as follows: given an
n ∈ N, a function f : X → Y of metric spaces is said to be coarsely n-to-1 if
for every R > 0 there exists an S > 0 such that the preimage of any subset
C of Y with diameter diamC ≤ R can be covered by at most n subsets of
X with diameter at most S.

In [1], K. Austin and Ž. Virk introduced the notion of a coarsely finite-
to-1 function, which can be defined as follows: a function f : X → Y of
metric spaces is said to be coarsely finite-to-1 if for every R > 0 there exist
S > 0 and m ∈ N such that the preimage of any subset C of Y with diameter
diamC ≤ R can be covered by at most m subsets of X with diameter at most
S. Note that in this definition both m and S may depend on R.

In this paper we introduce the notion of a coarsely S-finite-to-1 function
between metric spaces, where the number S > 0 is predetermined and it
does not depend on the choice of R: given an S > 0, we say that a function
f : X → Y of metric spaces is coarsely S-finite-to-1 if for every R > 0 there
exists an m ∈ N such that the preimage of any subset C of Y with diameter
diamC ≤ R can be covered by at most m subsets of X with diameter at
most S. Such functions make sense in the context of homomorphisms be-
tween countable groups regarded as metric spaces, in particular when these
homomorphisms are proper maps, i.e., when they have the property that the
preimages of compact subsets of codomain are compact in domain. These
homomorphisms have finite kernels, and kernels play a role in establishing
the value of S in statements on coarse S-finite-to-1-ness of these maps. In
fact, the role of ker f will be shown in Theorem 20, which is stated for
global morphisms of countable approximate groups: this theorem says that
when f : (Ξ,Ξ∞) → (Λ,Λ∞) is a global morphism of countable approximate
groups which is also proper, then f : Ξ∞ → Λ∞ is a coarsely (diam(ker f))-
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finite-to-1 map, and each k-component fk = f |Ξk : Ξk → Λk is a coarsely
(diam(ker f ∩ Ξ2k))-finite-to-1 map. Although we are using the notion of
countable approximate groups, we are treating these as metric spaces with
left-invariant proper metrics, so the proof of Theorem 20 is easy to follow
from the point of view of metric geometry.

Before reaching the proof of Theorem 20 in Section 4, we dedicate Section
3 to some basic facts on approximate groups and global morphisms between
them. Section 2 contains notation and a reminder of some definitions needed
in the rest of the paper.

2 Notation and some notions we will need
Besides notation, this section will contain some reminders regarding metric
spaces, the properties of functions between them, and choosing “nice” metrics
on countable groups.

Our notation N for natural numbers does not include zero, that is, N =
{1, 2, 3, . . .}. For a set S, |S| stands for the number of elements of S.

Furthermore, let us introduce some notation considering subsets of a
group, so let A and B be subsets of a group (G, ·). Then AB := {ab | a ∈
A, b ∈ B}, so A2 = AA = {ab | a, b ∈ A} and Ak = Ak−1A, for k ∈ N≥2. We
use A−1 := {a−1 | a ∈ A}, and if A = A−1, we say that A is symmetric. If
g ∈ G, then gA := {ga | a ∈ A}. We mark the identity element of the group
G by e or eG.

Next we move on to metric spaces. Given a metric space (X, d), we denote
by Bd(x, r) the open ball, and by Bd(x, r) the closed ball in X centered at
the point x ∈ X and with radius r > 0. If there is only one metric we need,
we will omit writing the index d from Bd(x, r). Recall that a metric space
(X, d) is proper, i.e., metric d is proper, if all closed balls (with bounded
radii) in (X, d) are compact. Also, a metric d on a group G is left-invariant
if d(gh, gk) = d(h, k), for all g, h, k ∈ G.

It is easy to see that if G is a group with a left-invariant metric and R > 0,
then for any g ∈ G we have B(g,R) = gB(e, R).

Since we will be focusing on countable groups, note that we will always
consider countable groups as discrete groups, i.e., topological groups with
discrete topology. In [5, Section 1] it is described how on a countable group
(which need not be finitely generated) one can always choose a left-invariant
proper metric so that this metric agrees with discrete topology on the group.
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Therefore, whenever we need a metric on a countable group, we will always
choose it to be a left-invariant proper metric. Note that when the metric is
proper, the closed balls with respect to this metric in a countable group are
compact and so they are finite sets (as subsets of a discrete space), which
also means that open balls with bounded radii are finite sets.

Now we turn our attention to functions. Let us first remark that the word
map is for us interchangeable with the word function, that is, a map need
not be continuous. We already saw in the Introduction the definition of an
n-to-1 function f : X → Y between sets X and Y as a function for which its
fibers have at most n elements. Analogously, a function f : X → Y between
sets is said to be finite-to-1 if the preimage of any point of Y is a finite set,
i.e., if all fibers of f are finite.

Next we define a function being proper and coarsely proper, using defini-
tions of these terms from [3] and [4] (notice that our coarsely proper function
was called (just) proper in [2]).

Definition 1. A function f : X → Y between metric spaces is called proper
if preimages of compact sets are compact, and f is called coarsely proper if
preimages of bounded sets are bounded.

Let us state some facts connecting properness and coarse properness of a
function between metric spaces.

Lemma 2. If (X, d) is a metric space, (Y, d′) is a proper metric space, and
a map f : X → Y is proper, then f is coarsely proper.

Proof. If D is a bounded set in Y , then D is contained in some closed ball
Bd′(y,R) of Y . From Y being proper we get that Bd′(y,R) is compact in Y ,
so by properness of f we have that f−1(Bd′(y,R)) is compact in X. Since a
compact set in a metric space must be bounded, we get that f−1(Bd′(y,R))
is bounded in X, so, as its subset, f−1(D) is also bounded in X.

Lemma 3. If (X, d) is a proper metric space with discrete topology induced
by its metric, (Y, d′) is a metric space and a map f : X → Y is coarsely
proper, then f is proper.

Proof. If C is a compact subset of Y , then C is bounded in Y , so since f is
coarsely proper, f−1(C) is bounded in X, i.e., it is contained in some closed
ball Bd(x,R) of X. From X being proper we get that Bd(x,R) is compact,
and since (X, d) has discrete topology, Bd(x,R) must be a finite set, so its
subset f−1(C) is also finite and therefore compact in X.
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Lemma 4. If both (X, d) and (Y, d′) are proper metric spaces with discrete
topology induced by their metric, then the following statements are equivalent
for a map f : X → Y :

(1) f is coarsely proper,

(2) f is proper,

(3) f is finite-to-1.

Proof. Lemmas 2 and 3 give us the equivalence of (1) and (2). We get
(3) implying (2) from the finiteness of every compact subset of Y , and (2)
implying (3) from the finiteness of every compact subset of X.

Next we need to recall a well-known fact on fibers of group homomor-
phisms.

Lemma 5. If f : G → H is an epimorphism of groups, then for any h ∈ H
we have f−1(h) = gh ker f , where gh is an element of G such that f(gh) = h.

If G is a countable group taken with a left-invariant proper metric, and
H is any group taken with any metric, then for a group homomorphism
f : G → H which is also a proper map all fibers are compact subsets of G,
and therefore finite. Together with Lemma 5 this gives us:

Corollary 6. Let G be a countable group with a left-invariant proper metric
and let H be a group taken with any metric. If f : G → H is a group
homomorphism which is proper, then ker f is finite and f is a |kerf |-to-1
map.

3 Approximate groups and their global mor-
phisms

This section contains some basic facts on approximate groups. Much more
detailed account can be found in [3], but we will stick to only what is needed,
which will be parallel to what was done in [6]. First we need to introduce
the notion of an approximate subgroup of a group. The idea behind this is to
spoil, in a controlled way, the fact that a subgroup is closed under the group
operation, while keeping the properties of containing the inverse for each of
its elements, and containing the identity element. The following definition is
due to T. Tao ([8]):
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Definition 7 (Approximate subgroup of a group). Let G be a group and let
k ∈ N. A subset Λ ⊂ G is called a k-approximate subgroup of G if

(1) Λ = Λ−1 and e ∈ Λ, and

(2) there exists a finite subset F ⊂ G such that Λ2 ⊂ ΛF and |F | = k.

We say that Λ is an approximate subgroup of G if it is a k-approximate
subgroup for some k ∈ N.

As long as the set F is finite, the number of its elements is not going to be
important to us, since we will be interested in countably infinite approximate
(sub)groups. It is clear from the definition that the result of the group
operation between two elements of Λ is allowed to be outside of Λ, but it can
only be “a finite set away”. Note that for Λ there is the smallest subgroup
Λ∞ :=

⋃
k∈N Λ

k of G which contains Λ. We will use Λ∞ to define:

Definition 8 (Approximate group). If Λ is an approximate subgroup of a
group G, then the group Λ∞ =

⋃
k∈N Λ

k, which is the smallest subgroup of G
containing Λ, is called the enveloping group of Λ. The pair (Λ,Λ∞) is called
an approximate group.

We say that an approximate group (Λ,Λ∞) is finite if Λ is finite (but
clearly Λ∞ need not be finite). We say (Λ,Λ∞) is countable if Λ is countable,
which also implies that Λ∞ is countable, and this is the case in which we are
particularly interested.

The reason why we refer to (Λ,Λ∞) instead of just Λ is in the fact that
we need to regard Λ and Λk for any k ∈ N as metric spaces, and we do so
by introducing a (left-invariant proper) metric on Λ∞, so in fact, Λ∞ is the
ambient metric space for Λk, and therefore should be prominent.

Here are some basic examples and a non-example of approximate (sub)gro-
ups, taken from [3] and also mentioned in [6]:

Example 9 (A non-example). In (Z,+) define Λ := {2i | i ∈ Z} ∪ {0} ∪
{−2i | i ∈ Z}, which is clearly a symmetric set with 0. However, Λ is not
an approximate subgroup of Z, because Λ+Λ contains 2n + 2n+1 = 3 · 2n for
each n ∈ N, which are not in Λ, and it is easy to see that there is no finite
set F ⊆ Z such that Λ + Λ ⊆ Λ + F .

Example 10. In any group G, any subgroup H is obviously an approximate
subgroup of G, and since H∞ = H, the pair (H,H) is an approximate group.
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If F is a finite symmetric subset of G and e ∈ F , then F is clearly an
approximate subgroup of G, so (F, F∞) is an approximate group. If Λ is an
approximate subgroup of a group G, then Λk is also an approximate subgroup
of G, so (Λk,Λ∞) is an approximate group, for all k ∈ N.

Example 11. Let BS(1, 2) = ⟨a, b | bab−1 = a2⟩, i.e., the Baumslag-Solitar
group of type (1, 2), and define Λ := ⟨a⟩ ∪ {b, b−1}. Then Λ is symmet-
ric, containing identity and Λ∞ = BS(1, 2). Using the defining relation and
(b−1ab)2 = a it can be shown that Λ2 ⊆ Λ · {e, b, b−1, b−1a}, hence (Λ,Λ∞) is
an approximate group.

Here is a more demanding example coming from lattice theory, quoted
from [3, Example 2.87]):

Example 12 (Cut-and-project construction). Let G and H be locally com-
pact groups, and denote by πG : G × H → G and πH : G × H → H the
canonical projections. Let Γ be a subgroup of G×H such that the restriction
πG|Γ is injective. Then for any relatively compact symmetric identity neigh-
borhood W in H, the set Λ(Γ,W ) := πG(Γ ∩ (G × W )) is an approximate
subgroup of G, so (Λ(Γ,W ), (Λ(Γ,W ))∞) is an approximate group. This
Λ(Γ,W ) is referred to as a cut-and-project set, because it arises from Γ by
first cutting it with the “strip” G ×W in G × H, and then projecting down
to G.

Using homomorphisms between the enveloping groups, next we introduce
the global morphisms of approximate groups:

Definition 13. Let (Ξ,Ξ∞) and (Λ,Λ∞) be approximate groups. A global
morphism f : (Ξ,Ξ∞) → (Λ,Λ∞) is a group homomorphism f : Ξ∞ → Λ∞

for which f(Ξk) ⊆ Λk, for all k ∈ N.
Each restriction fk := f |Ξk : Ξk → Λk is referred to as the k-component

of f , and it is a so-called partial homomorphism, which means that whenever
a, b and ab are in Ξk, then fk(ab) = fk(a)fk(b).

It is easy to see that for a global morphism f : (Ξ,Ξ∞) → (Λ,Λ∞), f(Ξ)
is an approximate subgroup of Λ∞ (see [3, Example 2.51]), so in the proofs
that follow, we will often decide to replace (Λ,Λ∞) with (f(Ξ), f(Ξ)∞), or
just ask for a global morphism to be surjective.

Let us also note here that if we ask for a global morphism between ap-
proximate groups to also be a proper map, this will mean we are asking for
f : Ξ∞ → Λ∞ to be proper.
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4 Global morphisms of countable approximate
groups and coarse S-finite-to-1-ness

This final section is dedicated to proving Theorem 20, about global mor-
phisms which are also proper, between countable approximate groups, and
their properties of being coarsely diam(ker f)-finite-to-1, as well as their k-
components being coarsely diam((ker f)∩Ξ2k)-finite-to-1. We begin by stat-
ing a technical lemma, helpful in future calculations.

Lemma 14. Let (Λ,Λ∞) be a countable approximate group with a left-invari-
ant proper metric on Λ∞ and let k ∈ N. Then:

(1) For any subset A ⊂ Λ∞ and any x ∈ Λk, we have (xA) ∩ Λk ⊆ x(A ∩
Λ2k).

(2) For any x ∈ Λk and any R > 0 we have |B(x,R)∩Λk| ≤ |B(e, R)∩Λ2k|.

Proof. For the proof of (1), let A ⊆ Λ∞ and take any x ∈ Λk. Then for any
z ∈ (xA)∩Λk there is a w ∈ A such that z = xw, and also there is an x̃ ∈ Λk

so that z = x̃. Therefore from x̃ = xw it follows that w = x−1x̃ ∈ Λ2k, so
z ∈ x(A ∩ Λ2k).

For the proof of (2), let R > 0 and take any x ∈ Λk. Apply (1) to
B(x,R) = xB(e, R) to get

B(x,R) ∩ Λk = (xB(e, R)) ∩ Λk
(1)

⊆ x(B(e, R) ∩ Λ2k).

Therefore |B(x,R) ∩ Λk| ≤ |B(e, R) ∩ Λ2k|.

Lemma 15. Let (Ξ,Ξ∞) and (Λ,Λ∞) be countable approximate groups and
let f : (Ξ,Ξ∞) → (Λ,Λ∞) be a global morphism which is proper. Then
f : Ξ∞ → Λ∞ is a | ker f |-to-1 map. Moreover, for each k ∈ N, the k-
component fk = f |Ξk : Ξk → Λk is a |(ker f) ∩ Ξ2k|-to-1 map.

Proof. Take some left-invariant proper metrics on Ξ∞ and Λ∞ and, for the
sake of simplicity, assume that f : (Ξ,Ξ∞) → (Λ,Λ∞) is surjective as a map
of pairs, so, in particular, each fk = f |Ξk : Ξk → Λk is surjective, for all
k ∈ N.

The statement that f : Ξ∞ → Λ∞ is a | ker f |-to-1 map is true by Corol-
lary 6.
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To show the statement for components of f , let k ∈ N and let λ be a
random element from Λk. Since fk : Ξk → Λk is surjective, for this λ ∈ Λk

there is a ξλ ∈ Ξk such that fk(ξλ) = λ. Therefore, using Lemma 5 and
Lemma 14 (1) we get:

f−1
k (λ) = f−1(λ) ∩ Ξk = (ξλ ker f) ∩ Ξk ⊆ ξλ((ker f) ∩ Ξ2k),

so |f−1
k (λ)| ≤ |ξλ((ker f)∩Ξ2k)| = |(ker f)∩Ξ2k|, which finishes the proof.

Remark 16. The estimate |f−1
k (λ)| ≤ |(ker f) ∩ Ξ2k| may seem too high,

since we know that |ξλ ker f | = | ker f |, but note that comparing the number
of elements in ξλ ker f and ker f within the approximate subgroup Ξk is not
the same as comparing ξλ ker f and ker f within the group Ξ∞. And we need
an estimate independent of ξλ, so the price of using the formula (1) of Lemma
14 and pushing ξλ in front of the expression is doubling of the power from Ξk

to Ξ2k.

Now let us state definitions for coarsely n-to-1 maps, coarsely finite-to-1
maps and coarsely S-finite-to-1 maps that we mentioned in the Introduction,
which translate the concepts of n-to-1 maps and finite-to-1 maps to coarse
geometry. We start with the notion introduced in [7], and rephrased in [1]:

Definition 17. Let n ∈ N. A function f : X → Y of metric spaces is said
to be coarsely n-to-1 if for every R > 0 there exists an S > 0 such that the
preimage of each subset C of Y with diameter diamC ≤ R can be covered by
at most n subsets of X with diameter at most S.

Next, the notion introduced in [1] and restated for metric spaces in [2,
Definition 5.12]:

Definition 18. A function f : X → Y of metric spaces is said to be coarsely
finite-to-1 if for every R > 0 there exist S > 0 and m ∈ N such that the
preimage of each subset C of Y with diameter diamC ≤ R can be covered by
at most m subsets of X with diameter at most S.

Note that in the previous definition both m and S (may) depend on R.
We introduce a change in Definition 18 so that S is given first and it does
not depend on the choice of R.

Definition 19. Let S > 0. A function f : X → Y of metric spaces is said
to be coarsely S-finite-to-1 if for every R > 0 there exists an m ∈ N such
that the preimage of each subset C of Y with diameter diamC ≤ R can be
covered by at most m subsets of X with diameter at most S.
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Now we are ready to prove our main result:

Theorem 20. Let (Ξ,Ξ∞) and (Λ,Λ∞) be countable approximate groups, and
let f : (Ξ,Ξ∞) → (Λ,Λ∞) be a global morphism which is also proper. Then
f : Ξ∞ → Λ∞ is a coarsely (diam(ker f))-finite-to-1 map. Moreover, for
every k ∈ N, the k-component fk = f |Ξk : Ξk → Λk is a coarsely (diam(ker f∩
Ξ2k))-finite-to-1 map.

Proof. Let us start by taking d on Ξ∞ and d′ on Λ∞ to be some left-invariant
proper metrics, and recall that Bd′(λ,R) is notation for a closed ball in
(Λ∞, d′). We may assume that f : (Ξ,Ξ∞) → (Λ,Λ∞) is surjective as a map
of pairs, so, in particular, each fk = f |Ξk : Ξk → Λk is surjective, for all
k ∈ N.

Now take an R > 0 and fix it. To begin with, let C ⊆ Λ∞ be any
subset with diamd′ C ≤ R. Then there is a λ ∈ C such that C ⊆ Bd′(λ,R).
Recall that Bd′(λ,R) = λBd′(eΛ, R), and put m := |Bd′(eΛ, R)|, which we
know is finite since the metric d′ is proper, and it depends on R, but does
not depend on λ. Therefore Bd′(λ,R) also has m elements, so let us write
Bd′(λ,R) = {λ1, . . . , λm} ⊆ Λ∞. Since f is surjective, pick some elements
ξi ∈ Ξ∞ so that f(ξi) = λi, for i = 1, . . . ,m. Then

f−1(C) ⊆ f−1(Bd′(λ,R)) =
m⊔
i=1

f−1(λi) =
m⊔
i=1

ξi ker f,

and by left-invariance of the metric d on Ξ∞ we have that diamd(ξi ker f) =
diamd(ker f), for all i. Thus f−1(C) is covered by m sets of diameter diamd(ker f),
so the first statement holds.

For the second statement, fix a k ∈ N and an R > 0. Take any subset
C ⊆ Λk with diamd′ C ≤ R, so there is a λ ∈ C such that C ⊆ Bd′(λ,R)∩Λk.
By Lemma 14 (2) we know that |Bd′(λ,R)∩Λk| ≤ |Bd′(eΛ, R)∩Λ2k| =: m ∈ N
(where this m does not depend on λ). Therefore we can write Bd′(λ,R)∩Λk =
{λ1, λ2, . . . , λℓ}, where ℓ ≤ m, and, because fk : Ξk → Λk is surjective, we
can choose some ξi ∈ Ξk so that fk(ξi) = λi, for i = 1, . . . , ℓ. Then, using
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Lemma 14 (1) we have (ξi ker f) ∩ Ξk ⊆ ξi(ker f ∩ Ξ2k), so

f−1
k (C) = f−1(C) ∩ Ξk ⊆ f−1(Bd′(λ,R) ∩ Λk) ∩ Ξk

=
ℓ⊔

i=1

f−1(λi) ∩ Ξk =
ℓ⊔

i=1

(ξi ker f) ∩ Ξk

⊆
ℓ⊔

i=1

ξi(ker f ∩ Ξ2k).

By left-invariance of the metric d on Ξ∞ we get

diamd(ξi(ker f ∩ Ξ2k)) = diamd(ker f ∩ Ξ2k),

so f−1
k (C) can be covered by at most m sets of diameter diamd(ker f ∩ Ξ2k).

Remark 21. As in Remark 16, estimating diameters of (ξi ker f) ∩ Ξk by
diameters of ker f∩Ξ2k might seem like overkill, but again, comparing ξi ker f
and ker f within the approximate subgroup Ξk is not the same as comparing
ξi ker f and ker f within the group Ξ∞.

Remark 22. By Lemma 4, instead of asking that the global morphism in
Lemma 15 and Theorem 20 be proper, we could have asked for it to be coarsely
proper, or finite-to-1.
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