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Abstract

The argument shift method is a well-known method for generating com-
mutative families of functions in Poisson algebras from central elements
and a vector field, verifying a special condition with respect to the Pois-
son bracket. In this notice we give an analogous construction, which gives
one a way to create commutative subalgebras of a deformed algebra from
its center (which is as it is well known describable in the terms of the
center of the Poisson algebra) and an L.-differentiation of the algebra of
Hochschild cochains, verifying some additional conditions with respect
to the Poisson structure.
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1 Introduction: classical argument shift
method

1.1 History and motivation

In the study of integrable systems one naturally and inevitably encoun-
ters the question, whether there exists a sufficiently large set of first
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integrals of the given Hamiltonian equation. To answer it, it is often
convenient to have a large collection of commutative subalgebras in the
Poisson algebra of functions on the phase space. Thus, constructing and
classifying such algebras is an important indispensable part of the inte-
grable systems theory.

Among other methods of constructing commutative families of func-
tions, the argument shift method is one of the simplest and relatively
universal. It was first observed in the papers by Manakov in a particu-
lar case of Euler equation (see [I0]), and later it was formulated in full
generality (in the case, where the Poisson manifold is equal to the coad-
joint representation of a Lie algebra equipped with the standard Poisson
structure) by Mischenko and Fomenko, [6].

Since that time, the method has been the subject of minute dis-
cussions and numerous generalizations (one of which we explain in this
paper). In particular, it was shown that under mild conditions the com-
mutative algebras yielded by it are maximal (if the direction of the shift
is accurately chosen) and complete; see the papers of Bolsinov, Sadetov,
Zhang, Izosimov and others, [1} 2| [3] [8] [14].

On the other hand, according to Kontsevich (see [9]) and many others
one can apply a quantization procedure to any Poisson manifold, thus
obtaining the “quantum observable” algebra: the associative noncommu-
tative algebra, linearly isomorphic to the space of (usually smooth, or
polynomial) functions on the phase space (often with a formal parameter
I added to the picture), such that the product in it is a deformation of
the usual commutative product of functions, and the linear part of the
deformation is given by the Poisson structure (see the discussion at the
end of the section below). One can regard this algebra as the suit-
able domain for the investigation of the quantum mechanical problems;
similarly to the classical Hamiltonian mechanics, solving such system in-
volves finding a suitable system of mutually commuting elements in the
quantized algebra (this time the commutation is understood in the usual
algebraic sense). It is natural to assume that such algebras are somehow
related with the commutative Poisson subalgebras on the same space.

This idea, however simple in seems at first sight, is pretty hard to
put into practice; the search for the corresponding commutative quantum
algebras involves many nontrivial constructions and derives inspiration
from most variegated sources. For example, in case when the phase space
is given by the dual space of a Lie algebra, this involves the study of
universal enveloping algebras and their generalizations, like Yangians
and quantum groups, see [5, [1T].

In this paper we are discussing a possible way to construct quan-
tum counterpart of commutative algebras, yielded by the argument shift
method. It turns out that in spite of being very algebraic in its nature,
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and allowing numerous interpretations on classical level, this method
does not allow a straightforward interpretation in quantum case. The
known constructions, which give “quantum integrable systems”, related
to this method, involve hard results about the structure of universal en-
veloping algebras, Yangians, or the properties of the universal enveloping
algebras of affine Lie algebras at the critical level, see [7), 12} 13} 15, [16].

In this paper we suggest an algebraic construction, which generalizes
the argument shift method to the deformed algebra. It is based on the
theory of L..-algebras and L,,-morphisms. One can say, that it allows us
to obtain an analogue of the procedure, that generates the commutative
subalgebras, rather than constructs the commutative subalgebras in the
quantized algebra directly from the algebras, generated by the shift at
the classical level. A considerable drawback of this construction is that
to this moment I have no example, where this procedure actually works,
the conditions, that should be satisfied for it to be well-defined, being
too hard to observe. I hope to amend this in the papers to come.

The remaining part of this paper is organised as follows: in section
1 we recall the classical version of the argument shift method, which we
phrase in a greater generality than it is usually done: it turns out, that the
method is based on a purely algebraic consideration and does not depend
on the actual geometric nature of the ingredients it involves. In section
2 we recall the definitions and basic properties of L, algebras and Lo-
morphisms. We also recall the role they play in Kontsevich deformation
quantization construction. Then in section 3 we define L, derivations
of a DG Lie algebra and give the definition of weak Nijenhuis property.
We then use this notion in the particular case of the Lie algebra of local
Hochschild cochains (polydifferential operators) to show how one can get
the first nontrivial commutation relation, analogous to {£(f),&(9)} =
0 in the proposition [I} In order to move forward we need to replace
the weak Nijenhuis condition by the strong Nijenhuis condition, which
we do in section 4; then we show (theorem , how in this case the
Lyo-derivation gives rise to the analogue of the argument shift method.
Finally, in the last section we make few remarks on the possible further
developments and applications of our ideas.

1.2 The classical construction

In what follows we let A be a Poisson algebra, i.e. a commutative unital
algebra over a ground field k, char(k) = 0 (usually k = R or C) with a
bracket {,}: A® A — A, verifying the following set of relations:

(i) {,} is bilinear over k;

(i) {,} is antisymmetric: {f, g} = —{g, [ };
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(4ii) {,} verifies the Leibniz rule:
{f,9h} ={f,g}h +{f, h}g.
(iv) {,} verifies the Jacobi identity:

{f {9, h}} +{g:{h, [}} +{h.{f. g}} = 0.

Center Z,(A) of Poisson algebra A is the subalgebra in A, spanned by
the elements © € A such that {z,y} = 0 for all y € A; elements of
Z-(A) \ k are sometimes called Casimir elements or simply Casimirs.

If A = C>(M) is the algebra of smooth functions on a manifold,
then conditions (7)—(74) mean that the bracket {,} is determined by a
bivector field m € A2T'M; in this case, as it is well-known (see e.g. [4])
the condition (i) is equivalent to the equation

[m, @] = 0. (1)

Here [,] is the Nijenhuis-Schouten bracket of polyvector fields. In this
situation the bracket {f, g} of any two functions is given by the formula:

{f,9} =m(df,dg).

One calls the bracket {, } Poisson bracket and the bivector 7 verifying
Poisson bivector.

An important particular case is when 7 has maximal rank; in this
case its inverse differential 2-form w = 7! satisfies the equation dw = 0
and one calls it a symplectic structure on M. Remark, that in symplectic
case there are no Casimirs in C*°(M), i.e. Zy(A) = C or R in this case.

Let £ be a vector field on M; recall that one says that £ is Poisson
field if the Lie derivative of m with respect to it vanishes; this condition
is equivalent to the equation

§{f,93) = {&(/). g} +{/.€(9)}- (2)

An important particular case of Poisson fields are the fields of the form
X = 7¥(df); here 7 is the “index raising” operator induced by m; in
coordinates:
7 (a)* = 7oy

for any 1-form a. The fields X are called Hamiltonian, they are char-
acterized by the equation Xy(g) = —{f, g}; the equality Lx,m = 0 now
follows from the Jacobi identity.

Another important class of vector fields consists of Nijehuis fields:
we shall say, that a field £ is Nijenhuis, if the second Lie derivative with
respect to & kills the Poisson bivector m, i.e.

Lim=0. (3)
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A good example of Nijenhuis field is any constant (in linear coordinates)
field on a vector space, in case the coefficients of 7 are linear functions; for
example, one can take M = g* with the standard Poisson-Lie structure.

The purpose of considering Nijenhuis fields follows from the next
observation (here A(M) is the Poisson algebra of smooth functions on a
manifold with respect to a bivector ):

Proposition 1 (The argument shift method). For any f, g € Z,(A(M)),
any Nijenhuis vector field & and any natural k, | the following relation
holds: {L{ f, Ltg} = 0.

Observe, that if £ is in fact Poisson field, then Lf f € Z(A(M)) for
all k e N, f € Z;(A(M)), so the statement holds trivially; however, in
the case of a “genuine” Nijenhuis field, i.e. if L¢m # 0, ﬁgﬂ‘ = 0, the
functions E’g f are no more central. Let us now sketch the proof of this
proposition:

Proof. We shall prove by induction in N > 0 that L’gﬂ'(d/lé f.dLgrg) =0
for all k+1+m = N and all f,g € Z.(A(M)) (this statement is a bit more
than what the proposition needs, since w(dﬁ’gf, dﬁég) = {E’gf, Elgg}).
The base of this statement (N = 0) is trivially true, since f, g are central.
Next, assuming that this statement holds for all small N, and dif-
ferentiating the corresponding equations by £ for all k, | and m we obtain
the following system of linear equations on the values of L7 (dL} f, dLY'g):

LETm(dLy f, ALy g) + Lem(dLE f,dLT g) + Lim(dLe f,dLY g) =0

for all K+ 1+ m = N. Observe next that due to the conditions on & and
monly k=0 and k£ = 1 can appear, so this system is reduced to

Len(dLLf,dLTg) + m(dLLT f,dLTg) + m(dLLf, dLY ' g) = 0,
Len(dL f,dLPg) + Lem(dLLf,dLT T g) =0,

where [+m = N —1 in both lines. We are going to show that this system

under the conditions of our proposition can have only trivial solutions.

To this end consider the second equation: varying [ from 0 to N — 1, we
get inductively:

Lem(dLY ™", dg) = —Lem(dLY 72 f,dLeg) = Lem(dLy ° f,dLEg)
== (=)N 1 Len(df, 5?*19)7

ie. Lem(dLy "1 f dLEg) = (=1)*Lem(dLy ™", dg).
Now we turn to the first series of equations: if m = 0, it is reduced
to
Lem(dLy ™ f,dg) +m(dLy ™ f,dLeg) = 0,
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since g is central. So

m(dLY T f,dLeg) = —Lem(dLY T f,dg) = Lem(dLY 2 f,dLeg).
Now from the the equation of the first series with m = 1 we get:

Lem(dLY 2 f,dLeg) +m(dLY ™ f,dLeg) +m(dLY 2 f,dLEg) = O,
or

m(dLy 2 dLg) = —2Lem(dLy [, dLeg)

= 2Len(dLY T dg) = 2Lem(dLY 2 f,dLEg).

We plug this into the equation for m = 2 in the first series:

Len(dLY 2 f,dLEg) +m(dLY 2 f,dLEg) +m(dLY > f,dLEg) = 0

we get
m(dLY 7 f,dLEg) = —3Lem(dLY ™, dg).

By induction we get
m(dLY 7 f dLEg) = (1) kLem(dLY ™, dg).

But when k& = N we see that 7 (df, dﬁévg) = 0, since [ is central. So

Cgﬂ'(dﬁé\/ ~1.dg) = 0 and all the other expressions vanish automatically.
O

Remark 2. In fact, this statement and its proof we gave here are ap-
plicable to binary operations of any kind m : V@V — V on any vector
space V and any linear operator £: 'V — V' ; we just put:

§(m)(a,b) = £(m(a,b)) — m(£(a),b) —m(a,£(b)), a,beV

for any two operators of this sort. Then if £2(m) = &£(&(m)) =0, and
a,b€ Zn(V)={z €V |m(z,y) =0=m(y,z), Yy € V}

then for all k, | € Ny we have m(£*(a), &(b)) = 0.

As one knows from Kontsevich’s theorem, for every Poisson structure
7 on a manifold M there exists an associative star-product * = %, on
the space of formal power series with coefficiewnts in functions on M:

Fxg= o+ oifa)+ 3 HBi(f.0) (4)
k=2
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where By(—,—) are suitable bidifferential operators; to make our no-
tation more uniform we shall usually replace the term %{ fyg} in this
formula by Bi(f, g). Below we shall give a brief description of Kontse-
vich’s construction, proving the existence of this formula. It is known,
that many properties of the original algebra of functions on M can be
easily transferred to the algebra A(M) = (C*°(M)[[A]],*), called the de-
formation quantization of M. In particular, one can show that for every
element in Z(A(M)) there will be a well-defined element f € Z(A(M))
(where on the right we denote by Z(.A(M)) the center of A(M), i.e. the
subalgebra of elements, commuting with every other element in A(M)).

One can ask, if the argument shift method can be transferred to the
quantized algebra as well? The proof of proposition [I| being purely al-
gebraic and suitable for any type of binary operation, this conjecture
seems quite plausible. However the answer to this question still remains
unclear, although in some important particular cases it is known to be
positive. For example, this is the case when M = g* for a semisimple
Lie algebra g, but the construction of commutative families in that situ-
ation is quite complicated and is based on the subtle properties of affine
Lie agebras and Yangians, i.e. on the study of infinite-dimensional Lie
theory.

The purpose of the remaining part of this paper is to describe a
construction analogous to the argument shift method in which the notion
of Nijenhuis vector field is replaced with a suitable construction from L,
algebras. We hope, that this notion being somewhat less restrictive than
the usual Nijenhuis condition 7 it will be possible to find instances
of this structure in a wider set of examples (and hence to find large
commutative subalgebras in quantized algebras).

2 L. structures and morphisms

2.1 L.--algebras
We begin with the classical definition:

Definition 3. One says that a graded space V- = @, -, Vi is given the
structure of Loo-algebra, if its graded exterior algebra Ay = A*(V[1]) is
equipped with operator D: Ay — Ay of degree 1 such that

(i) D? =0;

(i) D is differentiation with respect to the free cocommutative coalgebra
structure Ay on Ay, i.e. Ay: Ay — Ay @ Ay and

AyDy = (Dy ®1+1® Dy)Ay.
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It follows from condition (i) that the map D is determined by its
“Taylor series” coefficients: D = {D,,},,>1 where D,,: A"(V[1]) — V[1]
is a degree 1 map (or, if we restore the original grading D,,: A™(V) — V
has degree 2—n); now we can write the condition (i) “in coordinates”, i.e.
in terms of D,,. For instance (we use the same symbols for homogeneous
elements of V' and for their degrees, i.e. a € V,, b € V, etc.):

D1(D1(v)) =0,
D1(Ds(a,b)) — Da(D1(a),b) — (—1)*Dy(a, D1 (b)) = 0.

Thus, the operator D; plays the role of differential in V' and is usually
denoted by d; similarly Ds determines a skew symmetric binary opera-
tion [,] on V of degree 0, commuting with d. now the relation for Dj in
this notation can be written as

(dDs)(a, b, ¢) = [[a, b], ] + (=1)* T, o], a] + (=1)"**I[[e, a], 1],

where dDjs is the differential of a homogeneous map: df = do f—(—1)/ fo
d. In other words, [,] verifies the (graded) Jacobi identity up to a homo-
topy. All the other relations are generalized Jacobi identities; they have
the form:

(an)(CLl, e ,an) = Z Z (71)6(J,a1,‘..,an)

=2 c€UnSh(i,n—1)

“Dniy1(Di(ao(1ys - - o(i)), Qo (it1)s - - > Qo (n))-

Here UnSh(i, j) is the set of all shuffles of size (i,7), (recall, that o €
Siyj is called (4,j)-shuffle, if o(1) < 0(2) < -+ < 0(d), 00 + 1) <
o(i+2)<---<o(i+j)) and sign €(c,ay,...,a,) is determined by the
Koszul rules (below we shall usually abbreviate this notation just to e
or ¢(o)).

From these formulas it is easy to see that the usual DG Lie algebra
structure on a space g determines a particular kind of L., -structure: we
just put Dy = d, Dy = [,] (the usual differential and the Lie bracket
on g) and put D3 = Dy = --- = 0. In fact, Ay with structure map D
in this case is just the Chevalley-Eilenberg complex with its standard
differential.

2.2 Morphisms and homotopies in L, category

Given two Lo.-algebras V, W one can ask, what is the proper notion of
morphisms between them. This question is answered by the following
definition:
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Definition 4. A degree 0 map F': Ay — Aw for any two L. -algebras
V, W is called an Lo-morphism, if

(i) DwoF =FoDy;

i is a homomorphism with respect to the free cocommutative coal-
3) Fis ah hi ith t to th tati l
gebra structures on Ay, Aw .

As before this condition can be expressed in terms of “Taylor coef-
ficients”: we represent F' as a collection of maps F,: A™(V) — W of
degree 1 — n, then the condition (ii) from definition 4| turns into the
following equalities:

Fidy = dwily,
Fi([a,b]) — [Fi(a), F1(b)] = dw (F2(a, b)) + Fa(dva,b) + (=1)"Fa(a, dvb),

and so on; for arbitrary n this turns into the following somewhat cum-
bersome equation

Z Z Freis1(DY (Qo(1)s - -+ Qo(i))s Qo (it1)s - - - Qo))

=1 o
n

1
D IETD DD 3 Ve LRI
k=1

t1+-Fig=n T
s i (@r (i g4 1)s -5 Gr () (5)

Here, as before, the second sum on the left is taken over all (i,n — 7)
shuffles, while the last sum on the right is over (i1,42,,...,%) shuffles
and the signs €1, €5 are chosen in accordance with the Koszul rules.
Since the morphisms of L..-algebras are determined by these “Taylor
coefficients”, below we shall sometimes write F' = {F,,}: V — W.

As before, the usual homomorphism of DG Lie algebras is an example
of Loo-morphism: we set Fj, = 0 for k > 2. However, even in case of Lie
algebras one can consider “genuine” L., maps, i.e. maps which do not
coincide with the usual Lie-algebraic morphisms. In fact, equation in
this case turns (with previous notation) into:

(dF)(a1, ... an) = Y (=)D E, (i, a5]v,ar,. .., @, ... 6, an)

1<j

= >, Z D O [Fi(agy,- - 00(0) Fj(@o(ir1)s- - - Gaim)lw

i+j=n o

(6)
Finally, we give the following definition of homotopy between two L..-
morphisms:
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Definition 5. Two Lo,-maps F, G: Ay — Aw are called homotopic, if
there exist a map H: Ay — Aw of degree —1, such that

(i) F—G = DwH + HDy;

(ii) H is a derivation with respect to the free cocommutative coalgebra
structures on Ay, Ay, i.e.

AwH=(H®1+1® H)Ay.

Once again, due to the condition (i) of this definition, the first con-
dition can be expressed in terms of the “Taylor coefficients” of H, i.e.
H ={H,}n>1, where H,: A"V — W is a map of degree —n. Then the
equation from (i) takes the form of the following sequence of equalities:

Fl(a) - Gl(a) = del(a) + Hldv(a),
Fg(a,b) — Gg(a,b)
= dHs(a,b) + (H1([a,b]v) — [Hi(a),blw — (—=1)*°[H;(b), alw)

and so on. In particular the map H; is just a chain homotopy between
F and G. The general formula looks rather intimidating:

Fa(ai,...,an) — Gn(ai,...,an)
= Z Z (71)6(0) (DW,j+1(Hi(ao(1)7 . ,aa(i)), Qo (it1)s--- ,a(,(n))

i+j=noccUnSh(i,j)
+ Hj 1 (Dv,i(ao(1), - - - Go(i))s Go(it1)s - - - » ao‘(n)))
(7)

In what follows we shall deal with L.-algebras, corresponding to DG
Lie algebras; in this case equation will look as follows:

F.(ay,...,an) — Gulas,...,an)

= dHn(a‘17 ceey a’n) + Z(_l)ﬁ(l) [H’n.fl(alv cee 764\1'7 cee 7an)7ai]W
i=1

+ Z (_1)€(i7j)Hn—1([ai7aj]V7alv'--7@7"'7(5’}7"'7an)'
1<i<j<n
(®)

One of the main advantages of L,-algebras and morphisms is the fact
that in this context homotopy equivalence is equivalent to the equiva-
lence in L., sense.

More accurately, recall that quasi-isomorphism of DG Lie algebras
is a homomorphism f: g — h, which induces isomorphism on the level
of homology (observe that it is enough to speak about the isomorphism
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on the level of vector spaces in this case). It turns out that not every
quasi-isomorphism of DG Lie algebras f has homotopy inverse, i.e. not
for every f one can find a homomorphism g: h — g, whose compositions
with f are homotopic to identity. But this is not so in the wider category
of L..-algebras.

Namely, one calls an Lo,-morphism F': Ay — Aw quasi-isomorphism
if its first “Taylor coefficient” Fy: V — W induces isomorphism in co-
homology. Then the following statement is true (see [9]):

Proposition 6. Fvery quasi-isomorphism F': Ay — Aw of Lo -algebras
18 homotopy-invertible, i.e. there exists an Loo-morphism G: Ay — Ay
such that F o G and G o F' are homotopic to identity.

In particular, by the virtue of this statement and due to the obser-
vations made in the previous paragraph every quasi-isomorphism of DG
Lie algebras obtains its inverse in the framework of L., category.

2.3 Quasi-isomorphisms and *x-products

The role of the L, algebras and morphisms in deformation theory is
based on the following observations: let a star-product be given.
Then the formal sum B = )" ., i"B, determines a 2-cochain in the
(h-linear) Hochschild complex of A[[h]]; the associativity condition then
is transcribed as the formula:

5(B) + 31B.B] = 0 )

where ¢ is the Hochschild cohomology differential and [, ] is the Gersten-
haber bracket, which introduces the DG Lie algebra structure on the
Hochschild cohomology complex with shifted dimension (in fact, Ger-
stenhaber bracket is a morphism of degree —1, so in order to turn the
Hochschild complex with [,] into a DG Lie algebra we must shift all
dimensions by 1).

The equation @ exists in the case of an arbitrary DG Lie alge-
bra g: just replace & with proper differential in g and use the given Lie
bracket. This equation is called Maurer-Cartan equation and the ele-
ments II of degree 1 in g are called Maurer-Cartan elements. It turns
out that the Maurer-Cartan elements behave very well with respect to
the Lo-morphisms between the DG Lie algebras. Namely:

Proposition 7. Let1l be a Maurer-Cartan element in g and let F': Ay —
Ay be an Loo-morphism between these algebras. Than the following for-
mula (assuming the convergence of the series in the right) determines a
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Maurer-Cartan element in b:

P =>" %FH(H,...7H). (10)

n>1

The proof of this statement is by direct computation with the help
of equation @ and we omit it.

Remark 8. In fact, the notion of Maurer-Cartan element can be defined
for arbitrary Lo algebra: it is such an elementI1 € V, that Dy (exp(I)) =
0, where

1
exp(l‘[):zaﬂ/\n-/\ﬂ.
n=0 n times

Observe that in a generic case exp(Il) € ]A\V, i.e. it is not an element of
the exterior algebra, but only an element in its suitable completion. If we
rewrite the equation Dy (exp(IT)) = 0 in “coordinate” terms, we obtain
the following equation:

1
dH—i—ZﬁDn(H,...,H):O.

n>2

If V. =g is a DG Lie algebra, then this equation is reduced to @D, since
D,, =0n > 3. It turns out that in this context the statement of proposi-
tionl] remains true, i.e. the formula determines a Maurer-Cartan
element in W. The proof in this case is even easier: just observe that
F(exp(I1)) = exp(F(IT)) under the assumption of general convergence of
all series.

The observation, made in proposition [7] helps to relate the Lo, the-
ory with the deformation problem: first of all, if A = C*°(M) for some
manifold M, one can consider a subcomplex of the Hochschild cohomol-
ogy complex of A[[A]], spanned by the A-linear local cochains, i.e. by
cochains, determined by polydifferential operators on M. Clearly, this
subcomplex is closed with respect to the Gerstenhaber brackets, so we
have a DG Lie algebra g° =D, [1](M)[[R]] of polydifferential operators
on M with Hochschild differential. It is our purpose to find in this DG
Lie algebra a Maurer-Cartan element B € g' = Dzlmly[l](M)[[hH, such
that B(f,9) = §{f. g} + o(h).

To this end we observe that the cohomology of local Hochschild com-
plex D]‘wly(M ) on M is isomorphic to the space of polyvector fields
T oty (M) on M; the isomorphism is induced by the Hoschild-Kostant-

p
Rosenberg map x: T, (M) — D, (M), determined by the formula:

X(‘I’p)(fh"')fp) = <dfl /\/\df;ﬂ?\I’)a

oly
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where (,) denotes the natural pairing between differential forms and
polyvector fields. One can show that this map in fact on the level of
cohomology induces not only an isomorphism of vector spaces, but also
isomorphism of graded Lie algebras, if we use Gerstenhaber bracket to
induce the Lie algebra structure on Hochschild cohomology (in effect
it even induces the isomorphism of graded Poisson algebras, if we con-
sider the wedge product on polyvectors and the standard product of
Hochschild cochains). However, the map x is not a homomorphism of
DG Lie algebras (although it commutes with the differentials, if we al-
low zero differential on 7, (M)). The same remarks of course are true
with respect to the A-linear complexes: one can define the map x:

ﬁoly[l](M)[[h]] — Dboly[l](M)[[h]], which will commute with differen-
tials and induce the isomorphism of Lie algebras on the level of coho-
mology; however this map will not be a homomorphism of Lie algebras.

On the other hand, the bivector 1hm € Tty [L1(M)[[7]] is a solution
of the Maurer-Cartan equation if the differential in Eily[l](M)[[h]] is
trivial, and hence as we have seen earlier, if the Hochschild-Kostant-
Rosenberg map could be extended to a quasi-isomorphism of L., al-
gebras, the formula applied to II = %hﬂ' would give us a Maurer-
Cartan element in the complex D, [1](M)[[R]], beginning with xn(3hm)
as prescribed in the deformation problem.

An elegant construction of such quasi-isomorphism for algebras of
functions on M = R™ with arbitrary Poisson structure was eventually
given by Kontsevich. We shall denote this quasi-isomorphism by U =
{Un}: Ty [I(M) — D}, [1](M), so that the x-product associated with

oly poly
it is given by

hn
B = ZHUH(T("”’W)'
n21 n times

Observe that the convergence is guaranteed in the context of formal
power series. We are not going to discuss the details of this construc-
tion now; for our purposes it is important to know that when the x-
product is induced by an Lo-map, in particular, by Kontsevich’s quasi-
isomorphism, the same construction as above induces the map from
Z.(A(M)) to Z(A(M)): for any f € Z.(A(M)) we put

f:Z%Un+1(f7 )i

Tyeuny T
n>0

n times

an easy computation shows that when f € Z.(A(M)), the inner deriva-
tion of A(M), induced by f is equal to 0.

Remark 9. In effect, this claim follows from the next simple and rather
well known observation: if V' is an Lo -algebra and 11 is a Maurer-Cartan

73



GEORGY SHARYGIN

element in V', then the formula

1
D‘H,m(vl, ceyUn) = Z HDTL-HC(UD ceny o, L T
k>0 N
k times

(under the general assumption of convergence in all such formulas) de-
termines a new Loo-structure in V; we shall denote V' equipped with
this structure by (V, DY). Similarly if F = {F,}: V — W is an Leo-
morphism, then the formula

I Z
Fn(vlv---7vn F7L+k ’Ul,...,’Un,H,...,H)
k>0 ! N
kE times

determines an Loo-morphism F' = {F}: (V, DY) — (W, DII,?V(H)).
Now, the claim concerning the algebras’ centres follows from the fact

that in the context of Poisson algebra f € Z (A(M)) if and only if

DZ(M)’l(f) =0 and f € A(M) is in the center of A(M) if and only if

Df\(hf),l(f) =0.

Thus for all elements in Z,(A(M)) we have their counterparts in the
center of A(M). In the next section we shall discuss the analog of the
Nijenhuis equation in the context of L..-algebras and its meaning for
constructing commutative subalgebras in A(M).

3 L-derivations and Nijenhuis property

3.1 Properties of T

poly[ KM) and Dpoly[ ](M) in low
degerees

In the remaining part of this note, we are going to deal only with DG
Lie algebras, related with the deformation theory, i.e. 7, [1](M) and
D, [1](M) (although we shall often omit the shift from our notation).
Thus it is worth beginning this section with a short list of properties,
that we shall need.

First of all, the grading in both algebras begins with —1 (after shift),
or from 0; the differential vanishes on the lowest degree in both algebras
and the lowest degree elements in both algebras commute.

If we go further, we see that Hochschild-Kostant-Rosenberg map,
although not a homomorphism of DG Lie algebras, intertwines the com-
mutators in the lowest degrees (i.e —1 and 0 in the shifted case): on the
level —1 this is evident since on both sides commutator vanishes; for
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two vector fields &, n € mly[l](M), their commutator is equal to the

difference of their compositions:

[§,m1(f) = € (f)) —n(&(f)),

but the same is true for x(£) = £ and x(n) = . Finally, the commutator
of f e Toly[ J(M) with ¢ is equal to £(f) € poly[l](M); and similarly
Gerstenhaber bracket of f and £ = x(§) gives the same result.

Also let us recall that the Poisson bracket of two functions can be
written as the following combination of elements in 7, [1](M):

{frg9} =1f[m 9l

(where [,] stand for the Schouten brackets). If we use the Lichnerowicz-
Poisson differential dr(y) = [r, 9] on T, [1](M), we can rewrite this
formula as {f,g} = [f,drg]- The skew-symmetry of this operation is
then ensured by the Jacobi identity and the fact of commutativity of
7;;12[1](M) mentioned above.

Similarly, if II is a Maurer-Cartan element in D, [1](M), then we
have the following equation

f*g_g*f:[fv[nag]]v

for all f,g € A(M), where % is the deformed multiplication, determined
by IT and [, ] is the Gerstenhaber bracket. In other words, the commutator
in A(M) is defined by the same formula as the Poisson algebra structure
on A(M), therefore we are going to denote this commutator by the same
symbol fxg—gxf = {f, g}, when it can cause no ambiguity. As before, the
skew-commutativity of this operation follows from Jacobi identity and
the commutativity of the Gerstenhaber brackets on functions. Observe
that in this context the Jacobi identity for both braces follows from the
Maurer-Cartan equation and the fact that differentials vanish on degree
—1 elements.

3.2 L-derivations, Maurer-Cartan elements and Ni-
jenhuis conditions

We begin with the following definition, very similar to the definitions,
given in previous section:

Definition 10. Let V be an Lo -algebra, in particular we can take V =
g, where g is a DG Lie algebra. A map 2 : Ay — Ay is called Loo-
derivation, if

(i) Z is a coderivation of the free coalgebra;
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(it) X commutes with the structure map D.

In particular, as before the map 2 is determined by its “Taylor
coefficients” and one can write down the condition (4i) in terms of these
coefficients and the structure maps Dy ;. In what follows we shall only
consider the Lo-derivations for DG Lie algebras, so let 2" = {X,,} be
an Lo-derivation of a DGLa g; then the maps X,,: A™ g — g verify the
equalities

an+1(a0, B an)
= > ()" Xn(laia) a0, .., Gi, .. Gy, Gn)

+) (=1)%[ai, Xn(ao, .-, i - -, an)].
i=0
Here as earlier €; ;, €; are the signs, determined by the permutations,
which place the elements a;,a; in front of the others and ~ denotes the
omission of an element.
Now for a MC element 7 € g consider the element

Z () = Z%Xn(ﬂ,...,w).

As before we assume that all the formulas of this sort enjoy the conver-
gence property. More generally, for arbitrary a € g we put:

Lo(a) = (n_l 1)!Xn(a77r,...,7r).

n=1
Then

Proposition 11. The element 2 (m) is closed with respect to the -
twisted differential in g: d-(a) = da + [, a], i.e. dZ (7)) = —[r, Z (7)].
If in addition we suppose that Z(Z (7)) =0, i.e.

1
ZiXp(T(,...,ﬂ',%(ﬂ',...,ﬂ')) =0,
= (p—1)!
then it also verifies the equation [Z (7)), Z (7)] = 0.

Proof. We compute with the help of the equation (the signs do not
appear, since the degree of 7 is 0 in A*g):
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| —

!Xn(ﬂ,...,ﬂ')

3

=> (nil)!Xn(dﬂ'-‘r %[77771'],7'(',...777) - [F’Z

n=1

Here we used the Maurer-Cartan equation dr + %[w, 7] = 0. In a similar
way, one can prove the equality

d(Z7(a)) = [m, Zz(a)] + [Z (7),a] + Zx(dra). (12)

for arbitrary a € g. Now, from the latter formula, the equality d. 2 (7) =
0 and the equation

we see

0= d(27(2 (7))
= [m Ze(Z ()] + [2(7), Z(m)] + X (dr 2 () = [ 2 (), 2 (7)].

O

Definition 12. We shall say, that the Lo, -derivarion 2 of g verifies
weak Loo-Nijenhuis property with respect to a Maurer-Cartan element w

ing, if Z.(Z (7)) =0.

Remark 13. The proposition means that m + 2 (7)) is a Maurer-
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Cartan elementin g:
1
d(m+ Z (7)) + 5[7T—|— Z(m), 7+ X ()]
=dmr+ %[W,ﬂ'] +dZ (m)

([, 2 ()] + [%(ﬂ),ﬂH%[%(ﬂ),%(ﬂ]:0-

M\H

Also observe that we can rewrite equation (12) as

(dr 27)(a) = dx (27 (a)) — Zx(dra) = [Z(7),a]. (13)

3.3 L. -Nijenhuis property and commutation rela-
tions

We are going to find the relation between the map % and the brackets
in g. To this end we compute:

d(Xpro(z,y,m, ..., 7)) = Xppo(dz,y,m,...,7)
+ (—1)'“' (Xp+2($,dy,7r, ce,T) F Z(—l)llep+2(x,y, Tyeoo,dm, ... ,71'))

+Xp+1(['r7y]7777 e 771-)
p+2

—I—Z( 1 ( 7r,...,711',...,7r)

+(71)|I‘Xp+1(x’ [yaﬂ—]a Tyn 7?3 o aﬂ_))
+ Z (—1)‘m|+‘y|Xp+1(x,y, [0, )Ty e T Wy ey )
3<i<j<p+1 !

+z, Xp1 (g, m, . m)] 4+ (D)W [y, X (2,7, )]
p+1

+Z Xpt1(z,y, ,...,7{,...,77)}.

Here |z|, |y| are the degrees of x and y in the exterior powers of g.
Multiplying this expression by r and summing up for p =0,1,2,... we
obtain the formula:

de Zr(2,y) = L ([2,y)) — [, 22 ()] — (=)W [y, 27 (2)),

where we use the notation 25 (z,y) = ZZOZO %Xp+2($, Yy, m,...,m) and
dy on the left hand side denotes the usual differential of a map. Let
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us now assume that g = 7, [1](M) or g = D, [1](M) and consider
y =drg, x = f, where | f| = |g| = —1. In this case 2 (z,y) = 0 (because
of dimension restrictions) and we have:

Zaldrf,dng) = Z=({f,9}) — [f, Zx(dzg)] + {9, 2% (f)}

where we use the observation that [f,d.g] = {f, ¢}, the commutator of
f and g with respect to 7, see section Similarly, from we see
[fy Zx(dzg)] ={f, Z=(9)} + [f, [Z (%), g]] and we have:

f%ﬂ(dﬂ'fy dﬂ'Q) = f%ﬂ({fmg}) - {%w(f%g} - {fa f%ﬂ(g)} - [fﬂ [%(W)k.i]i)
Another important example is = f, y = [2 (), g]: first we compute

A 2 (2 (1), 9) = 2= ([ (7), 9]) = [ 2 (), 27 (9)]-

Here we used the equation d, %2 (w) = 0. Next, using this equation we
compute

[ )
= ‘%ﬂ([fa [«%(7‘()79]}) - [fv ‘%fﬂ'([%(ﬂ)vg])} - [[‘%(W)79]7 ‘%ﬂ'(f)]
= 2= (lf, [Z(7), 9]]) = [f, dn 22 (2 (1), 9)]
— [/ (2 (), 2= (9] = [2=(f), [Z (7). gl

(15)
Let now f, g belong to the “center of m-deformed product”, i.e. let d, f =
d=g = 0 (see section . Then by we have:

2x({f,93) ={2=(f), 9} +{f, Z=(9)} + [f, [2 (), 9],

and so 2:({f.9}) = {Zx(f). 9} = {f. Z=(9)} = [f,[Z(7).g]] = 0.
Next we apply to f, Zx(g) where d.f = 0:

Zx({f, Zx(9)}) = {2 (f), Zx (@)} S, Zx (22 (9))}+(f, [2(7), Z=(9)]]-

So:
{25(f), Zx(g)} + [f. [Z (), 22 (9)]] = 0. (16)

Similarly, taking the pair 25 (f), g with d,g = 0 we get:
{27(F), Z=(9)} + g, [Z (), 22())]) = 0 (17)
(here we used the identity [f,g] = 0 for all functions). Next, we apply

equation ([1E): since drf = drg = d 2 (7) = 0 the left hand side of
this equation vanishes. The first term on the right is equal to 0 since
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[f,[Z (7),g]] = 0, and the second term is equal to {f, (2 (7),9)} =0
since f is in center. Thus this equation amounts to

[f [ (), Ze ()]l + g, [2 (), Z=(f)]] = 0. (18)
Now, summing up the equations and and subtracting we

get:
2{‘%Tf(f)a %w(g)} =0.
Thus, {‘Q’/‘W(f)’ f%ﬂ(g)} =0.

4 Argument shift in deformed algebras

4.1 Strong Nijenhuis property

We saw, that in the case when 2 verifies the weak Nijenhuis condition,
the elements 2 (f), Z=(g) commute, although they are not in general
central: one sees from equation that in this case

dx 2 (f) = [2 (), £,

which need not vanish. However, weak Nijenhuis property is not enough
to prove the commutativity of 2.%(f), Z.!(g) for all k and I. In order
to prove this alongside the reasoning from the first section, we shall
need a stronger condition. To this end we observe that the formal ex-
ponentiation of an L..-derivation as a map from Ay to itself gives an
Ls-automorphism of V. Indeed, the commutation with Dy, follows from
the definitions, and the fact that exponent of a coderivation is a homo-
morphism of coalgebras is trivial. As we have explained earlier in section
2:3] any Maurer-Cartan element II in V' determines a deformation of
the differential Dy; = d in V' and any Lo-morphism can be applied
to Maurer-Cartan elements and can be extended to an L.,-morphism
between the L,-algebras with differentials, deformed by the Maurer-
Cartan elements.
Summing up, we have the following a bit cumbersome proposition:

Proposition 14. Let V be an Loo-algebra, Z = {Xp}tn>1: Av —
Ay an Lyo-derivation of V and I1 € V' a Maurer-Cartan element. Let
exp(Z) be the map with “Taylor coefficients”

exp(Z )nlar, ..., an)

1 1
:ijﬂ 2 i\(ia — D (ip — 1)

iy tigtetip—p=n+t1

Z Xy (o (Xig (X (Ag(1)s -+ 5 Qo(in))s Qo415 - -+ Qo(iyig—1))s - - -
ocEeS,,

. ), ag(i1+...+ip71+3,p), N ,aa(n)).
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Then exp(Z") is an Lo, -morphism. Moreover, exp(%Z )(I1) is a Maurer-
Cartan element in'V and if Zn is given by the formula

1
—Xnpplar, ... an, 11, T0) (19)
p: N———

Znun(al,...,an) = Z

>0 )
p= p times

then 21 is an Loo-derivative between (V, Dy 1) (the Loo-algebra V with
-deformed differential Dy,1) and (V, Dy,exp(2) (1)), which means that
the following equality holds:

Zn o Dy = Dy exp(a) ) © 21
In particular, exp(Zn) is an Le-morphism between (V,Dvyn) and
(Va DV,exp(.f?f)(H))'

In the particular case V = g and II = 7 (the usual Maurer-Cartan
element in DG Lie algebra) the map 2 = {27 n}tn>0: Ag = Ag, with
“Taylor coefficients” given by equation will verify the following iden-
tities, similar to

(d%W,n+1)(aO, . ,an)
— Z (1) Z% n([as, aj], a0, .-, @iy e v, Gy e vy Gp)

0<i<j<n
n

+) (=D ai, Zrm(ao, .-, an)].

i=0
However, here d 27 41 stands for the commutator
[d, 2 nt1] = dexp(2)(m) © Zwnt1 + (=1)" P g1 0 dr.
We shall call maps with this property twisted Lo -derivations.

Remark 15. Of course, all the statements of this section are still true for
the maps exp(tZ), exp(tZr) etc. We shall use this observation below.

It is clear, that the maps we discussed above are closely related with
this construction: 25 (a), Z(z,y) are just the 1-st and the 2-nd “Taylor
coefficients” of this twisted L..-derivation. This brings forth the follow-
ing definition:

Definition 16. We shall say, that 2 wverifies the (strong) Nijenhuis
condition with respect to m, if

Znnlar,...,a,) =0, when a; = Z (w) for somei=1,...,n.
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Of course, every strong Nijenhuis derivation verifies the weak Nijen-
huis property, so all the statements from the previous section remain
valid. Below we shall show that strong Nijenhuis property of an L..-
derivation of DG Lie algebras allows one perform the trick from the
proposition [1|and thus obtain commutative subalgebras in quantized al-
gebras. One of the problems of the theory that we develop here is that
so far we have no example of a “genuine” (strong) Nijenhuis derivations,
which would not come from the considerations of the usual Nijenhuis
fields on a Poisson manifold.

4.2 Argument shift for strong Nijenhuis derivations

Let now g be a deformation the DG Lie algebra, i.e. g = 7__ [1}(M) or

poly

g= D;olly[l](M) Now we claim that the following is true:

Proposition 17. Let 2" be an Lo -derivation of a deformation DG Lie
algebra g, which verifies the strong Nijenhuis condition with respect to a
Maurer-Cartan element w, then

Zra({z,y}) = {271 (@), y} +{z, 271 (y)} + [z, [Z (7), y]]
and
Zra([z, [Z(7), y]]) = [Z7 (@), [2 (7)), y]] + [2, [ 2 (), Z71(y)]

forallz,y € g~ of the form x = ,%”W’fl(f), Yy = 3&”7571(9), k,1=0,1,2,...
with f, g in the center of m, i.e. if df =0=drg.

Proof. First of all, observe that under the conditions we have exp(t.2”) ()
=7 +tZ (7). Now we have the following lemma

Lemma 18. Let x be of the form xj = ﬁ/}”’fl(f), d.f =0, as prescribed

s

in proposition [I7 Then dr(zy) = [2 (1), zp_1].

Proof. The map exp(tZx,1) = > 150 %%kl is the 1-st “Taylor coeffi-

s

cient” of exp(t2;), t € R. Thus, it verifies the condition:
eXp(tf%/'ﬂ',l) odr = dexp(tﬁt’)(fr) © eXp(t‘%ﬂ',l)'

This is true for all ¢t € R, so for every k = 1,2,... and every f € g we
have

dr o 251 (f) + (~DVI[2 (m), 2501 ()] = =251 0 da(f)-

Since d, f = 0, the statement follows. O
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Now, using the equation we see that the first equation from
proposition (17| would follow if we prove that £ 2(d-x,dry) =0 for z =
xr, y =y and for all k,l = 1,2,... asin the conditions of proposition
To this end consider 27 3(Z (7),z,dry); we may assume that &k, > 0
since otherwise the statement is trivially true. Due to the dimensional
restrictions

L s(Z (), 0, dry) = 0= 2 o(2, dry).

On the other hand, since 2 is a twisted Lo-derivation and verifies the
strong Nijenhuis property, 2 () is d,-closed and we have:

0= (dZx3)(Z(7), xk—1,dry)
= 7772([‘%(77)’ xk—l]v dﬂy) = %W,Q(dﬂ$ka dﬂ'y)
We used the statement of lemma [18]in the last equality.
Similarly, we have (dZ%2)(z, [Z (7),y]) = 0 due to the dimension

restrictions, result of lemma |18 and the equation we just proved; on the
other hand

(d%‘n’,Q)(x’ [%(W),y])
= [z, 222 ([2(7), yD)] = [ 271 (2), [27(7), yll + 22 ([, [27(7), 9]])

Finally, consider 27 2(Z (7),y): due to the strong Nijenhuis condition
(dZ%2)(Z (7),y) =0, on the other hand, due to the same condition we
have

(d 27 2)(2(7),y) = Zx 2 ([ 2 (), 9]) = [27(7), 21 (y)]-

Comparing the last two equalities we obtain the second formula from
proposition O

Now the following statement is a direct consequence of proposition
and the method we used in the proof of the proposition

Theorem 19. Let 2 be a strong Nijenhuis derivation of a deformation
DG Lie algebra with respect to the Maurer-Cartan element w. Then for
any f, g € 971, such that d. f = 0 = dg, the elements %ﬂ’fl(f), %Tf’l(g),
k,1=0,1,2,... commute with respect to :

{2505, 2 1(9)} = [271(f), [, 27 1 (9)]] = 0.

5 Conclusions and remarks

As we have just seen, the (strong) Nijenhuis property of an L., deriva-
tion allows one to reproduce in a word for word manner the proof of the
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proposition [I} thus yielding the commutative algebras in the deforma-
tion quantization of Poisson manifolds (in case the quantization is done
according to the Kontsevich’s recipe). Let us now briefly discuss the pos-
sible directions of future research in relation with this our construction
and the other topics, arising from it.

The first and most acute problem of our result is that so far we know
of no other example of L..-derivations, verifying the (strong) Nijenhuis
property except for the classical ones, i.e. those which arise in the study of
usual Poisson algebras, such as the linear Poisson structures on Euclidean
spaces (in particular on the dual spaces of Lie algebras). Finding such
a nontrivial example (or disproving its existence) is the most important
question to be addressed in any paper, dedicated to the elaboration of
the methods, considered above.

Next, the manner of our proof is not the most economical one. In fact,
we just showed, that the map 27 1 in this case verifies the equations,
similar to a Nijenhuis vector field ¢, see proposition [[7] Moreover, as
we saw in section 3, one can get some intermediate result with a much
less restrictive assumptions. Thus, the question, which should also be
addressed in a future investigation is whether the strong Nijenhuis prop-
erty can in some way be relaxed. Some evident improvements in this side
can be made right now; for instance, since our proof of proposition [I7]
only involved manipulations with the maps %}, . for k = 1,2, 3, we could
have freely removed the conditions, involving all other maps 2}, » from
our considerations. However, this is too small an improvement to make
this point at present. And of course, this question is closely related with
the previous one: one might suppose that relaxing the strong Nijenuis
property would make the quest for the corresponding example easier.

Another consideration, which can be helpful in the search of applica-
tions of this construction, is that in case of semisimple Lie algebras, the
quantum counterparts of the commutative subalgebras, rendered by the
argument shift method, are known; we imply at the results of Tarasov,
Rybnikov, Molev and others (see [16] [I3] [12]). These algebras are cer-
tain commutative subalgebras inside the universal enveloping algebra,
which coincide with the argument shift algebras modulo the terms, lin-
ear in deformation parameter; however, the methods by which they are
obtained, are totally different from each other and from anything, resem-
bling the argument shifting. Thus, one of the first questions, one could
ask about these algebras, is whether there is any shifting construction,
that would underlie these results. Another interesting observation is that
up to our knowledge, most of these results are about the semisimple Lie
algebras, whereas the usual method is applicable to any Lie algebra, and
even to any Poisson structure with any Nijenhuis field associated to it.
The role of the semisimplicity assumption is very far from being clearly
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understood, as well as the degree to which it can be dispensed of.

Last, but not least, is the question about the homological meaning
of the Nijenhuis property: as one knows, the major step towards the
construction of Kontsevich’s quantization is the observation, that the
solutions of Maurer-Cartan equations can be “moved around” by L..-
morphisms. Now, consider the pair (7, &), where 7 is a solution of the
Maurer-Cartan equation in a DG Lie algebra g and £ is a Nijenhuis
vector field for 7 (regarded as a derivation of g or more generally as a
linear operator on g). Let F' = {F,} : g — h be an L,-morphism of DG
Lie algebras. What kind of structure can we induce on h from (7, §) with
the help of F'? In particular, if F'is an L..-quasi-isomorphism, then can
one use F' to obtain a Maurer-Cartan element F'(7) in h with an Lo-
derivation, verifying the weak or strong Nijenhuis condition, associated
with F(m)?
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