
ACTA MATHEMATICA SPALATENSIA
Vol.1 (2021) 47–52
https://doi.org/10.32817/ams.1.1.4

Received: 25 Sep 2019
Accepted: 17 Dec 2019

A note on Banach fixed point

property

Vlasta Matijević

Abstract

In this short note we consider a sort of converse of the Banach fixed
point theorem and prove that a metric space X is complete if and only
if, for each closed subspace Y ⊆ X, any contraction f : Y → Y has a
fixed point y ∈ Y.
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1 Introduction and main result

A metric space is an ordered pair (X, d), where X is a nonempty set
and d is a metric (distance function) on X. A map f : X → X from a
metric space (X, d) into itself is called a contraction, if there exists a co-
efficient κ ∈ [0, 1〉 such that d(f(x), f(x′)) ≤ κd(x, x′), for any x, x′ ∈ X.
The remarkable Banach fixed point theorem states that any contraction
f : X → X from a complete metric space (X, d) has a (unique) fixed
point y ∈ X. Even more, it gives a procedure, a constructive method,
for reaching the fixed point y of f and, for each step of the procedure,
estimates the “error”, the distance to the fixed point y. Precisely, for
an arbitrary point x ∈ X, a sequence (xn) in X recursively defined by
x1 = x and xn = f(xn−1), for n ≥ 2, converges to the fixed point y and
d(xn, y) ≤ κn

1−κd(x, f(x)), n ∈ N, where κ denotes the coefficient of the
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contraction f (see [1, Theorem 7.2]). The property of contractions given
in the Banach fixed point theorem was a motivation for introducing the
following notion.

Definition 1. A metric space (X, d) is said to satisfy the Banach fixed
point property (BFPP, for short) if every contraction f : X → X has a
fixed point.

So, the Banach fixed point theorem states that a complete metric space
satisfies BFPP. Then a natural question arises: If a metric space (X, d)
has BFPP , is (X, d) complete? In other words, is the converse of the
Banach fixed point theorem true? As M. Elekes shows in his paper [2],
it is known for a long time that the answer to this question is negative
and the following counterexample, presented by E. Behrends in 2006,
was considered as “folklore”. Let X =

{
(x, sin 1

x ) : x ∈ 〈0, 1]
}
⊆ R2 be a

subspace of the Euclidean plane (R2, d2), where d2 denotes the Euclidean
metric. Obviously, X is not complete, but it satisfies BFPP. M. Elekes
provides a simple proof that X satisfies BFPP ([2, Theorem 1.2]). The
proof is based on a fact that, for each contraction f : X → X, there exists
a, 0 < a < 1, such that f(X) ⊆

{
(x, sin 1

x ) : x ∈ [a, 1]
}
. Since a subset

X[a,1] =
{

(x, sin 1
x ) : x ∈ [a, 1]

}
⊆ X is compact, X[a,1] is complete and

applying the Banach fixed point theorem to the restriction f
∣∣X[a,1] of

f to X[a,1] we get a fixed point y ∈ X[a,1] for f. However, studying the
space X we noticed the following interesting phenomenon.

Proposition 2. A metric space X =
{

(x, sin 1
x ) : x ∈ 〈0, 1]

}
⊆ R2 ad-

mits a closed subspace Y ⊆ X which does not satisfy BFPP.

Proof. Put Y =
{

( 1
nπ , sinnπ) : n ∈ N \ {1, 2}

}
=
{

( 1
nπ , 0) : n ∈ N \ {1, 2}

}
⊆ X. Obviously, Y is closed in X since the closure ClY of Y in
R2 equals ClY = Y ∪ {(0, 0)} and then ClX Y = X ∩ ClY = Y.
Now, we define a map f : Y → Y by f( 1

nπ , 0) =
(

1
(n2+1)π , 0

)
. It is

clear that f does not have a fixed point. We claim that f is a con-
traction with the coefficient κ = 2

3 . Take arbitrary n, k ∈ N \ {1, 2}.
Note that d2

(
( 1
nπ , 0), ( 1

kπ , 0)
)

=
∣∣ 1
nπ −

1
kπ

∣∣ = |k−n|
nkπ . Now consider

d2
(
f( 1

nπ , 0), f( 1
kπ , 0)

)
= d2

(
( 1
(n2+1)π , 0), ( 1

(k2+1)π , 0)
)

=
∣∣ 1
(n2+1)π−

1
(k2+1)π

∣∣
= |k2−n2|

(n2+1)(k2+1)π = |k−n|(k+n)
(n2+1)(k2+1)π . Since n, k ≥ 3, it follows that k+n

nk =

1
n+ 1

k ≤
2
3 .We get d2

(
f( 1

nπ , 0), f( 1
kπ , 0)

)
= |k−n|(k+n)

(n2+1)(k2+1)π ≤
|k−n|(k+n)
n2k2π =

|k−n|
nkπ

k+n
nk ≤

2
3d2

(
( 1
nπ , 0), ( 1

kπ , 0)
)
, which proves that f is a contraction

and, consequently, Y does not satisfy BFPP.

Let us conclude. An incomplete metric spaceX =
{

(x, sin 1
x ) : x ∈ 〈0, 1]

}
⊆ R2 satisfies BFPP but admits an infinite closed proper subspace
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Y $ X which does not satisfy BFPP. It turned out that this observa-
tion led us to the following characterization theorem for completeness of
metric spaces, our main result.

Theorem 3. A metric space (X, d) is complete if and only if each closed
subspace Y ⊆ X of X satisfies BFPP.

2 Proof of Theorem 3

Let us first note that Theorem 3 is true, but not of particular interest,
if (X, d) is a finite metric space. Indeed, the following claim is obvious.

Proposition 4. Let X be a nonempty finite set and let d be an arbitrary
metric on X. Then (X, d) is a complete metric space.

Proof. Since X is finite, (X, d) is a compact metric space and, conse-
quently, complete (and totally bounded). Also note that the induced
metric topology is discrete.

Recall that a metric space (X, d) is totally bounded if and only if each
sequence (xn) in X admits a Cauchy subsequence (xnk

). Our proof of
Theorem 3 is based on the following characterization theorem for infinite
metric spaces.

Theorem 5. An infinite metric space (X, d) is complete if and only if
each infinite totally bounded subset A ⊆ X has an accumulation point
x0 in X.

Proof. Let (X, d) be complete and assume that a subset A ⊆ X is in-
finite and totally bounded. Then there exists in A a Cauchy sequence
(an) whose terms are mutually different points of A. The sequence (an)
is obtained in the following way. First, since A is infinite there exists
an injective sequence (xn) in A. So, all terms of (xn) are mutually dif-
ferent points of A. On the other hand, since A is totally bounded, (xn)
admits a Cauchy subsequence (xnk

). Putting ak = xnk
, k ∈ N, we get

the desired sequence (an). By assumption, (X, d) is complete, so (an)
converges to some point x0 ∈ ClA ⊆ X. Since x0 = lim(an) and (an)
consists of different points of A, it is obvious that each ball B(x0, ε)
intersects A \ {x0}. This shows that x0 is an accumulation point of A.

Conversely, assume that each infinite totally bounded set A ⊆ X has
an accumulation point in X. Take an arbitrary Cauchy sequence (xn)
in X. Put A = {xn : n ∈ N} . If A is a finite set, there exists a point
x0 ∈ X such that xn = x0 for infinitely many n ∈ N. So, (xn) admits a
stationary subsequence (xnk

). Since (xn) is a Cauchy sequence and ad-
mits a convergent subsequence (xnk

), it follows that (xn) is a convergent

49



VLASTA MATIJEVIĆ

sequence and converges to x0. Now, assume that A = {xn : n ∈ N} is an
infinite set. For each ε > 0, there exists k ∈ N such that {xn : n ≥ k}
is contained in a ball B(xk, ε), which implies that A is totally bounded.
By assumption, there exists an accumulation point x0 ∈ X of the set
A. Since every ball B(x0, ε) contains an infinitely many elements of A,
it is easy to see that x0 is an accumulation point of the sequence (xn).
Hence there is a subsequence (xnk

) of the sequence (xn) which converges
to x0. So, we conclude that (xn) is convergent and converges to x0. In
both cases the sequence (xn) is convergent, which shows that (X, d) is a
complete space.

In the proof of Theorem 3 we will need the following simple lemma.

Lemma 6. Let (xn) be a Cauchy sequence in a metric space (X, d) and
let (εk) be a sequence of positive real numbers. Then there exists a subse-
quence (xnk

) of the sequence (xn) such that nk > k and d(xnj
, xnk

) < εk,
for each j ≥ k and each k ∈ N.

Proof. The desired subsequence (xnk
) will be obtained inductively. Pre-

cisely, by induction we will determine strictly increasing sequence
n1 < n2 < · · · < nk < · · · of positive integers such that nk > k and
d(xn, xnk

) < εk, for each n ≥ nk and each k ∈ N.
Let k = 1. Since (xn) is a Cauchy sequence, for the given ε1 > 0, there
is an n′ ∈ N, n′ > 1, such that d(xn, xm) < ε1 holds, for any n,m ≥ n′.
Put n1 := n′ and we get d(xn, xn1

) < ε1, for any n ≥ n1 > 1.
Assumed that n1 < n2 < · · · < nk with the required properties are
already determined. Then, for the given εk+1 > 0, there exists an
n′ ∈ N such that d(xn, xm) < εk+1 holds, for any n,m ≥ n′. Put
nk+1 := max {n′, nk + 1}.Obviously, nk+1 > nk and d(xn, xnk+1

) < εk+1,
for each n ≥ nk+1. Moreover, nk+1 > nk > k and nk+1 > k + 1 holds.
Thus, the inductive step is proven.
The obtained subsequence (xnk

) is the desired one. Indeed, for each
k ∈ N and each j > k, nj > nk holds and consequently d(xnj

, xnk
) < εk,

by the properties of the inductive construction.

Now, we are prepared to prove our main result.

Proof. (of Theorem 3). If (X, d) is complete and Y ⊆ X is a closed
subset of X, then the subspace (Y, d) is complete as well. Applying the
Banach fixed point theorem to (Y, d), it follows that Y satisfies BFPP.

Conversely, assume that each closed subspace Y ⊆ X of X satisfies
BFPP. If X is finite, then X is complete according to Proposition 4. So,
let us consider the case when X is an infinite set. According to Theorem
5, it is sufficient to prove that any infinite totally bounded subset A ⊆ X
has an accumulation point in X. So, let A be an arbitrary infinite totally

50



A NOTE ON BANACH FIXED POINT PROPERTY

subset of X. As it is shown in the proof of Theorem 5, there exists a
Cauchy sequence (an) in A consisting of mutually different points of A.
For each n ∈ N, put Fn := {ak : k ≥ n} ⊆ A. Note that each an /∈ Fn+1,
since the terms of (an) are mutually different points of A. Further, (Fn)
is a decreasing sequence of subsets of A. Put εk := 1

2d(ak, Fk+1), for
each k ∈ N. If there exists a k ∈ N such that εk = 0, then ak ∈ ClFk+1.
We get ak ∈ (ClFk+1) \ Fk+1 and conclude that ak is an accumulation
point of Fk+1. Then ak is an accumulation point of A as well, since
Fk+1 ⊆ A. If εk > 0, for each k ∈ N, applying the previous lemma,
we get a subsequence (ank

) of the sequence (an) such that nk > k and
d(anj

, ank
) < εk, for each j ≥ k and each k ∈ N. Let f : F1 → F1 be

a map defined by f(ak) = ank
. Since nk > k and all terms of (an) are

mutually different points, it follows f(ak) = ank
6= ak, for each k. Hence,

f does not have any fixed point. Let us show that f is a contraction
with a coefficient κ = 1

2 . Take arbitrary points ak, aj ∈ F1, k 6= j and,
without loss of generality, assume that j > k. Then d(f(aj), f(ak)) =
d(anj

, ank
) < εk = 1

2d(ak, Fk+1) ≤ 1
2d(ak, aj) holds, which proves that f

is a contraction. So, f is a contraction of a subspace F1 ⊆ X which does
not satisfies BFPP. By the assumption, each closed subspace Y ⊆ X
of X satisfies BFPP, which implies that F1 is not a closed subset of X.
Thus, ClF1 6= F1 and there exists a point x ∈ (ClF1) \ F1. The point
x is an accumulation point of F1 and also of A, since F1 ⊆ A. In both
cases the derived set A′ of A is non-empty and the claim is proved.

Having in mind a way how the proof of Theorem 3 is carried out, we
get the following theorem.

Theorem 7. Let (X, d) be a metric space. Then the following claims
are equivalent:
(i) X is complete.
(ii) Each closed subspace Y ⊆ X of X satisfies BFPP.
(iii) Each infinite totally bounded subset A ⊆ X has an accumulation
point in X.

At the end, let us go back to the subspace Y considered in Propo-
sition 2 and use its properties to get a condition for incompleteness of
metric spaces.

Corollary 8. Let (X, d) be a metric space and let Y = {xn : n ∈ N} ⊆ X
be an infinite closed subspace of X consisting of mutually different points
of X having a property that there exist a strictly increasing sequence (nk)
in N and a coefficient κ ∈ [0, 1〉 such that nk > k and d(xnk

, xnj ) ≤
κd(xk, xj) for each j, k ∈ N. Then X is not complete. Furthermore, if
for each contraction f : X → X there exists a complete subspace Z ⊆ X
such that f(X) ⊆ Z, then X satisfies BFPP.
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Proof. Define f : Y → Y by f(xk) = xnk
, k ∈ N. Then f is a contraction

which does not have a fixed point. According to Theorem 3, it follows
that X is incomplete. The second claim is obvious, since we can apply
the Banach fixed point theorem to the restriction f �Z .
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