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On the iterated normed duals

Nikica Uglešić

Abstract

Several properties of the normed Hom-functor (dual) D and its iterations
Dn are exhibited. For instance, D turns every canonical embedding (into
the second dual space) to a retraction (of the third dual onto the first one)
having for the right inverse the appropriate canonical embedding (of the
first dual space into the third one). Some consequences to the direct-sum
presentations and quotients of higher dual spaces are considered.
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1 Introduction

By studying the quotient shapes of (normed) vectorial spaces in [7] and
[8], the author had realized that the iterated normed dual functors and
canonical embeddings can provide some important informations about
the structure of higher dual spaces. Let NF (BF ⊆ NF ) denote the
category of normed (Banach) spaces over F ∈ {R,C}. In this paper we
consider the normed dual functor D : NF → NF as well as its iterations,
i.e., the contravariant and covariant functors

D2n−1 : NF → NF , D2n : NF → NF , n ∈ N,

respectively (having their images in BF ⊆ NF ).
An interesting and useful result reads as follows. For every object X

of NF , D2n−1 turns the canonical embedding jX : X → D2(X) to the re-
traction D2n−1(jX) : D2n+1(X)→ D2n−1(X) for which D2n−2(jD(X)) :
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D2n−1(X) → D2n+1(X) is an associated section (D0 ≡ 1NF
). Thus

we may think Dn(X) as a closed complemented subspace of Dn+2(X)
having the annihilator Dn−1(X)0 for a closed direct complement. As a
consequence, we exhibit the following closed direct-sum presentations:

D2n+1(X) = D1 uA0 uA2 u · · ·uA2n−2,

D2n+2(X) = D2 uA1 uA3 u · · ·uA2n−1,

where (isometrically) D1
∼= D(X), D2

∼= D2(X), Ak ∼= Dk(X)0, 0 ≤
k ≤ 2n− 1, and Dk(X) is identified with its iterated canonical image in
D2n(X), k even, or D2n+1(X), k odd. At the end, we aim our attention
at the behavior of the iterated dual functors on a quotient space.

2 Preliminaries

We shall frequently use and apply in the sequel several general or special
well known facts without referring to any source. So we remind a reader
that

- the set theoretic and topological facts come from [1];

- the facts concerning functional analysis are taken from [2, 4, 5, 6];

- our category theory language follows that of [3].

Our category framework will be NF — the category of all normed spaces
over F ∈ {R,C} and all the corresponding continuous linear function,
i.e., all bounded linear operators, as well as BF — its full subcategory
determined by all Banach spaces. Clearly, NF is a concrete category
whose every object is an ordered pair (X, ‖·‖), where X is a vectorial
space over F and ‖·‖ is a norm on X (implicitly including the algebraic
structure too). When there is no ambiguity, we do not stress the norm.

We recall hereby the well known dual space of a normed vectorial
space over F ∈ {R,C}. For our purpose it is much more convenient
to use the categorical approach as follows. There exists a contravariant
structure preserving hom-functor, i.e., the contravariant Hom-functor

HomF ≡ D : NF → NF ,
D(X) = X∗ — the normed dual space of X,

D(f : X → Y ) ≡ D(f) ≡ f∗ : Y ∗ → X∗, D(f)(y1) = y1f,

and D[NF ] ⊆ BF . Furthermore, for every ordered pair X,Y ∈ Ob(NF ),
the function

DX
Y : NF (X,Y ) ≡ L(X,Y )→ L(Y ∗, X∗) ≡ BF (Y ∗, X∗)
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is a linear isometry (‖D(f)‖ = ‖f‖), and hence, DX
Y belongs toMor(NF )

and D is a faithful functor.
Further, there exists a covariant Hom-functor

Hom2
F ≡ D2 : NF → NF ,

D2(X) = D(D(X)) ≡ X∗∗ — the normed second dual space of X,

D2(f : X → Y ) ≡ D2(f) = D(D(f)) ≡ f∗∗ : X∗∗ → Y ∗∗,

D2(f)(x2) = x2D(f),

and D2[NF ] ⊆ BF . (Caution: The notation “D(D(f)(x2))” makes no
sense!) Furthermore, for every ordered pair X,Y ∈ Ob(NF ), the function

(D2)XY : NF (X,Y ) ≡ L(X,Y )→ L(X∗∗, Y ∗∗) ≡ BF (X∗∗, Y ∗∗)

is a linear isometry (
∥∥D2(f)

∥∥ = ‖f‖), and thus, (D2)XY belongs to
Mor(NF ) and D2 is a faithful functor.

The most useful fact hereby is the existence of a certain natural trans-
formation j : 1NF

 D2 of the functors, where, for every X, jX : X →
D2(X) is an isometric embedding (the canonical embedding defined by
(jX(x))(x1) = x1(x)), and Cl(jX [X]) ⊆ D2(X) is the well known (Ba-
nach) completion of X. Namely, given a pair X, Y of normed spaces,
then

(∀f ∈ NF (X,Y ), jY f = D2(f)jX

holds true. Indeed, for every x ∈ X and every y1 ∈ D1(Y ),

((jY f)(x))(y1) = y1(f(x)) = jX(x)(y1f) = jX(x)(D(f)(y1))

= (jX(x)D(f))(y1) = (D2(f)(jX(x))(y1) = ((D2(f)jX)(x))(y1).

Clearly, if X is a Banach space, then the canonical embedding jX is
closed. Continuing by induction, for every n ∈ N, n > 2, there exists
a HomF -functor Dn of NF to NF such that Dn[NF ] ⊆ BF , Dn is con-
travariant (resp. covariant) whenever n is odd (resp. even), and for every
ordered pair X, Y of normed spaces, the function (Dn)XY is an isomet-
ric linear morphism of the normed space L(X,Y ) to the Banach space
L(Dn(Y ), Dn(X)) (n odd) or L(Dn(X), Dn(Y )) (n even). Consequently,
every (Dn)XY preserves null–vector morphisms, i.e., Dn(cθ) = cθn .

3 Some useful properties of the normed dual
functor

In addition to the properties of the normed dual functor quoted in the
previous section, we need the following ones too:.
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Lemma 1. (i) The functor D : NF → NF turns

- (open) epimorphisms into (closed) monomorphisms;

- open or closed monomorphisms and embeddings into open surjec-
tive epimorphisms;

- isometric isomorphisms into isometric isomorphisms.

The functor D2 : NF → NF maps

- open epimorphisms into open surjective epimorphisms;

- open or closed monomorphisms and embeddings into closed monomor-
phisms;

- isometries into closed isometries.

(ii) In addition, the restriction functor D|BF turns

- surjective epimorphisms into closed monomorphisms;

- (isometric) monomorphisms with closed ranges into (closed) epi-
morphisms.

The restriction functor D2|BF maps

- open or surjective epimorphisms into open surjective epimorphisms;

- monomorphisms with closed ranges into closed monomorphisms.

(iii) For all X,Y ∈ ObNF , the canonical embedding

jL(X,Y ) : L(X,Y )→ D2(L(X,Y ))

factorizes trough the linear isometry

(D2)XY : L(X,Y )→ L(D2(X), D2(Y )), D2(f)(x2) = x2D(f).

If Y is a Banach space, then the linear isometry

DX
Y : L(X,Y )→ L(D(Y ), D(X)), D(f)(y1) = y1f,

is closed.

Proof. (i). Assume that f ∈ NF (X,Y ) is an epimorphism. Let y1, y1′ ∈
Y ∗ such that D(f)(y1) = D(f)(y1′). It means that y1f = y1′f , im-
plying that y1 = y1′ because f is an epimorphism. Hence, D(f) is a
monomorphism of the underlying abelian groups, and consequently, it
is a monomorphism of BF ⊆ NF . Assume, in addition, that f is open.
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It suffices to prove that the range R(D(f)) E X∗ is a closed subspace,
i.e., that Cl(R(D(f))) ⊆ R(D(f)). Namely, if it is so, then D(f) is a
monomorphism of a Banach space with the range that is a Banach space
too. Then,

D(f)′ : Y ∗ → R(D(f)), D(f)′(y1) = D(f)(y1),

is a continuous bijection of Banach spaces, and thus, an isomorphism,
implying that D(f) is closed monomorphism. Let x1 ∈ Cl(R(D(f))).
Consider a sequence (x1n) in R(D(f)) such that lim(x1n) = x1. Since
D(f) is a monomorphism, it there exists a unique sequence (y1n) in Y ∗

such that, for each n ∈ N,

D(f)(y1n) = y1nf = x1n.

Recall that, algebraically, X = N(f)
·
+ W , where W ∼= R(f) = Y , and

that each fiber f−1[{y}], y ∈ Y , is the equivalence class [x]f = x+N(f),
where f(x) = y. Thus, for every n, and every y ∈ Y ,

y1n(y) = x1n(x) = x1n(w),

where f(x) = y and x = z + w is the unique presentation of x ∈ X =

N(f)
·
+W . It implies that, for each y ∈ Y and all x = z + w ∈ X, such

that f(x) = y,

lim(y1n(y)) = lim(x1n(x)) = x1(x) = x1(w)

holds true. Consequently, by putting

y1 : Y → F, y1(y) = lim(y1n(y)),

a certain function is well defined. Moreover, y1 is linear, because it is
a “copy” of the restriction x1|W , and y1f = x1 obviously holds. It
remains to prove that y1 is continuous. Let O be an open neighborhood
of 0 ∈ F . Since x1 is continuous, it there exists an open neighborhood U
of θX ∈ X such that x1[U ] ⊆ O. Then V ≡ f [U ] is an open neighborhood
of θY ∈ Y , because f is open, and

y1[V ] = (y1f)[U ] = x1[U ] ⊆ O.

Thus, y1 is continuous, and hence y1 ∈ Y ∗. Since D(f)(y1) = y1f = x1,
we have the additional statement proven.
Assume that f : X → Y is an open or closed monomorphism or an
embedding. Then f admits the factorization

X
f ′→ f [X]

i
↪→ Y, f ′(x) = f(x),
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where f ′ is an isomorphism onto the subspace f [X] E Y , and i is the
inclusion. Given an x1 ∈ X∗, put y1x1 = x1f ′−1 ∈ f [X]∗. By the Hahn-
Banach theorem, there exists an extension y1 ∈ Y ∗ of y1x1 , i.e., y1i = y1x1 .
Then

D(f)(y1) = D(if ′)(y1) = (D(f ′)D(i))(y1) = D(f ′)(D(i)(y1))

= D(f ′)(y1i) = D(f ′)(y1x1) = y1x1f ′ = x1f ′−1f ′ = x1,

implying that D(f) : Y ∗ → X∗ is a surjective epimorphism. Now, by
Open-mapping theorem, D(f) is open. Finally, if f is an isometric iso-
morphism, then D(f) is an isomorphism and, for every y1 ∈ D(Y ),∥∥D(f)(y1)

∥∥ =
∥∥y1f∥∥ = sup

{
|y1(f(x))|

∣∣x ∈ X, ‖x‖ = 1
}

= sup
{
|y1(y)|

∣∣ y ∈ Y, ‖y‖ = ‖f(x)‖ = ‖x‖ = 1
}

=
∥∥y1∥∥ .

Hence, D(f) is an isometry as well. The statements concerning D2

follow by D2(f) = D(D(f)) and D2(f)jX = jY f , where jX and jY are
the (isometric) canonical embeddings.
(ii). Assume that f ∈ BF (X,Y ) is a surjective epimorphism. By Open-
mapping theorem, f is open as well. Then, by (i), D(f) is a closed
monomorphism.
Assume that f ∈ BF (X,Y ) is a monomorphism having the range R(f)
closed in Y . Then, as previously,

f ′ : X → R(f), f ′(x) = f(x),

is a continuous bijection of Banach spaces, and thus, an isomorphism.
It follows that f is a closed monomorphism. Then, by (i), D(f) is an
open surjective epimorphism. If, in addition, f is an isometry, then f
preserves Cauchy sequences, and one readily verifies that D(f) maps the
sets closed in D(Y ) into sets closed in D(X). The statements concerning
D2|BF follow by those concerning D|BF .
(iii). Consider the range

R((D2)XY ) ≡ (D2)XY [L((X,Y ))] E L(D2(X), D2(Y ))

and the function

u : R((D2)XY )→ D2(L(X,Y ))

well defined by u(D2(f)) = f2f such that, for each f1 ∈ D(L(X,Y )),

f2f (f1) = f1(f). One readily sees that u is linear and continuous, and

that jL(X,Y ) = u(D2)XY .
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Finally, let Y be a Banach space, and let C ⊆ L(X,Y ) be a closed
set. Let (gn) be sequence in D[C] that converges in L(D(Y ), D(X)),
i.e., there exists lim(gn) ≡ g ∈ L(D(Y ), D(X)). Since DX

Y is a linear
isometry, it is a monomorphism, and there exists a unique Cauchy se-
quence (fn) in C such that, for each n ∈ N, D(fn) = gn. Notice that
L(X,Y ) is a Banach space because such is Y , and thus, there exists
lim(fn) ≡ f ∈ L(X,Y ). Since C ⊆ L(X,Y ) is closed, it follows that
f ∈ C. Then D(f) ∈ D[C], and the continuity implies that D(f) = g,
which completes the proof.

Lemma 2. For every normed space X, the canonical embedding

jD(X) : D(X)→ D2(D(X)) = D3(X)

is a section of BF having D(jX) : D3(X)→ D(X) for the corresponding
retraction, i.e., D(jX)jD(X) = 1D(X), and D(X) ≡ R(jD(X)) admits a
closed direct complement in D3(X).

Proof. Given any X ∈ Ob(NF ), we have to prove that D(jX)jD(X) =
1D(X). Recall that, in general, jY : Y → D2(Y ) is defined by jY (y0) =
y2y0 , y0 ∈ Y , such that, for every y1 ∈ D(Y ), y2y0(y1) = y1(y0). Further,

D(jY ) : D(D2(Y )) = D3(Y )→ D(Y )

is determined by D(jY )(y3) = y3jY , y3 ∈ D3(Y ). In the same way, the
canonical embedding

jD(Y ) : D(Y )→ D2(D(Y )) = D3(Y ) = D(D2(Y ))

is determined by jD(Y (y1) = y3y1 , y1 ∈ D(Y ), such that, for every y2 ∈
D2(Y ), y3y1(y2) = y2(y1). Thus, for Y = D(X) and every x1 ∈ D(X),

(D(jX)jD(X))(x
1) = D(jX)(jD(X)(x

1)) = D(jX)(x3x1) = x3x1jX .

Since, in addition, for every x0 ∈ X, we have

(x3x1jX)(x0) = x3x1(jX(x0)) = x3x1(x2x0) = x2x0(x1) = x1(x0),

it follows that, for every x1 ∈ D(X), x3x1jX = x1 holds, and therefore,
D(jX)jD(X) = 1D(X). This proves the first claim. Further, notice that

pD(X) ≡ jD(X)D(jX) : D3(X)→ D3(X)

is a (continuous linear) projection (p2D(X) = pD(X), of norm 1) onto

R(jD(X)). Therefore, the Banach spaceD(X), identified with jD(X)[D(X)]
≡ R(jD(X)), admits a closed direct complement in D3(X).
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It is well known that there are Banach spaces (for instance c and c0)
that are not isometrically isomorphic to any of the dual normed spaces.
We now prove that they are not even isomorphic in general.

Theorem 3. (i) If a normed space X is isomorphic to a dual space
of a normed space, then X is a Banach space, the canonical embedding
jX : X → D2(X) is a section of BF and X ≡ R(jX) admits a closed
direct complement in D2(X).
(ii) The (codomain restriction) functor D : NF → BF is not surjective
onto Ob(BF ), that is, there exists X ∈ Ob(BF ) such that X � D(Y ) for
each Y ∈ Ob(NF ).

Proof. (i). Let X be a normed space such that X ∼= Dn(Y ) for some
Y ∈ Ob(NF ) and n ∈ N. Then, clearly, X is a Banach space. Since
Dn(Y ) = D(Dn−1(Y )), one may assume that n = 1. Let f : X → D(Y )
be an isomorphism of BF ⊆ NF . Then D2(f) : D2(X) → D3(Y ) is an
isomorphism of BF and the diagram

X
f→ D(Y )

jX ↓ ↓ jD(Y )

D2(X) →
D2(f)

D3(Y )

in BF commutes. By Lemma 2, D(jY )jD(Y ) = 1D(Y ) holds true. Put

rX : D2(X)→ X, rX = f−1D(jY )D2(f).

Then one readily verifies that rXjX = 1X and hence jX : X → D2(X)
is a section of BF . Further, notice that the morphism

pX ≡ jXrX : D2(X)→ D2(X)

is a continuous linear projection (p2X = pX) onto R(jX). Therefore, the
Banach space X, identified with jX [X] ≡ R(jX), admits a closed direct
complement in D2(X). (Notice that ‖pX‖ = ‖rX‖ = 1 regardless to
‖f‖.)
(ii). Assume to the contrary, i.e., that every Banach space is isomorphic
to the dual space of a normed space. Then, since the dual of a space
equals to the dual of its Banach completion, every Banach space Z is iso-
morphic to the dual D(W ) of a Banach space W . (Further, by iteration,
every Banach space would be isomorphic to the second dual of a Banach
space, and so on.) Thus by our assumption and (i), for every Banach
space Z, jZ : Z → D2(Z) is a section of BF and Z ∼= R(jZ) admits a
closed direct complement in D2(Z). Now, let X be a non-bidual-like Ba-
nach space, i.e., D2(X) 6∼= X. Then X ∼= R(jX) & D2(X). Now assume
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that there is a closed subspace Z E D2(X) such that R(jX) E Z. Choose
an arbitrary such Z and denote by j : X ↪→ Z the codomain restriction of
jX . By Lemma 1 (i), we may assume that D2(X) ∼= D2(R(jX)) E D2(Z)
as well. According to (i), let

rZ : D2(Z)→ Z, rZjZ = 1Z

be a retraction of BF corresponding to the canonical embedding jZ .
Then the domain restriction

r ≡ rZ |D2(X) : D2(X)→ Z, ri = 1Z ,

is a (continuous linear) retraction of D2(X) onto the subspace Z, imply-
ing that

p ≡ ir : D2(X)→ D2(X)

is a continuous linear projection (p2 = p) along N(p) = N(r) onto
R(p) = R(r) = Z. This implies that every such Z admits a closed
direct complement in D2(X). Finally, in order to get a contradiction,
an appropriate pair X, Z of such concrete Banach spaces is needed. Let
X = c0 (the subspace of l∞ consisting of all null-convergent sequences
in F ). Recall that c0 is not bidual-like because of D2(c0) ∼= l∞ 6∼= c0.
Namely, there are (isometric) isomorphisms D(c0) ∼= l1 and D(l1) ∼= l∞
(see [5, p. 86, Zadaci 6. and p. 76, Teorem 2.3.8]). However, it is well
known that there is a closed subspace Z E l∞,

c0 ≡ R(jc0) E Z E l∞ ∼= D2(c0),

which does not admit any closed direct complement in l∞ — a contra-
diction. This completes the proof.

Remark 4. (i) Though, by Theorem 3, there are Banach spaces that
are not isomorphic to any of the dual spaces, we do not know whether
every Banach space is a retract of its second dual space (the converse of
Theorem 3 (i) (?)). (ii) Recall that D(Fn) ∼= Fn, n ∈ N, and that, for
all 1 < p, q <∞ such that p−1 + q−1 = 1, we have

D(FN
0 , ‖·‖p) = D(Cllp(FN

0 , ‖·‖p)) = D(lp) ∼= lq,

where FN
0 is the countable direct sum of F ’s, i.e.,

FN
0 = {x : N→ F | x(n) = 0 for almost all n}.

Further, since D(l1) ∼= l∞ and Cll∞(FN
0 , ‖·‖∞)) = c0, we have

D(FN
0 , ‖·‖∞) = D(c0) ∼= l1

(see Lemma 4.1 (i) of [8]). Thus the following question occurs:
Question. Does the functor D raise an uncountable-infinite

algebraic dimension?
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4 The direct-sum presentations of iterated
dual spaces

Lemma 2 motivates the following consideration. Given a normed spaceX
and a k ∈ {0} ∪ N, let us denote by jk,X ≡ jDk(X) : Dk(X)→ Dk+2(X)
the canonical embedding (D0 = 1NF

). Then the class {jk,X | X ∈
Ob(NF )} determines a natural transformation jk : Dk  Dk+2 of the
functors. When there is no ambiguity, i.e., when a normed space X
is fixed, we simplify the notation jk,X to jk. Notice that, for a given
X ∈ Ob(NF ), the following morphisms of BF ⊆ NF occur:

D(X)
j1→ D3(X)

D(j0)→ D(X),

D2(X)
j2
⇒

D2(j0)
D4(X)

D(j1)→ D2(X),

D3(X)
j3
⇒

D2(j1)
D5(X)

D3(j0)

⇒
D(j2)

D3(X)

and, generally, for every k ∈ {0} ∪ N and each l, 0 ≤ l ≤ k,

D2k+1(X)
D2k−2l(j2l+1)−→ D2k+3(X)

D2l+1−2l(j2l)−→ D2k+1(X),

D2k+2(X)
D2k−2l(j2l+2)−→ D2k+4(X)

D2k+1−2l(j2l+1)−→ D2k+2(X).

Let, for each k, S2k+1(X) be the set of all D2k−2l(j2l+1) ∈ L(D2k+1(X),
D2k+3(X)), and letR2k+1(X) be the set of allD2k+1−2l(j2l) ∈ L(D2k+3(X),
D2k+1(X)), 0 ≤ l ≤ k. Similarly, let S2k+2(X) be the set of all
D2k−2l(j2l+2) ∈ L(D2k+2(X), D2k+4(X)), and let R2k+2(X) be the set
of all D2k+1−2l(j2l+1) ∈ L(D2k+4(X), D2k+2(X)), 0 ≤ l ≤ k. Hence, for
each n ∈ N, the sets Sn(X) and Rn(X) are well defined. By Lemma 1,
since all jk are isometries, all the morphisms belonging to Sn ∪Rn have
norm 1.

Theorem 5. (i) For every normed space X and every n ∈ N, each
s ∈ Sn(X) is a section of BF having an rs ∈ Rn(X) for the corresponding
retraction, and conversely, each r ∈ Rn(X) is a retraction of BF having
an sr ∈ Rn(X) for the corresponding section. More precisely, for each
k ∈ N and every l ∈ {0, . . . , k},

D2k+1−2l(j2l)D
2k−2l(j2l+1) = 1D2k+1(X) and

D2k+1−2l(j2l+1)D2k−2l(j2l+2) = 1D2k+2(X)

hold true.
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(ii) In general,
(∀n ≥ 3)(∃s ∈ Sn(X))(∃r ∈ Rn(X)) rs is not an epimorphism (es-

pecially, rs 6= 1Dn(X).).

Proof. Let X be a normed space. Since, for every k ∈ {0} ∪ N, the
canonical morphism jk : Dk(X)→ Dk+2(X) (D0 = 1NF

) is an isometric
embedding, Lemma 1 implies that D(jk) : Dk+3(X) → Dk+1(X) is an
open surjective epimorphism.
(i). Let n = 1. By Lemma 2, D(j0)j1 = 1D(X), i.e., j1[D(X)] is a retract
of D3(X) with the retraction D(j0) and the corresponding section j1.
Let n ≥ 2. Since D is a contravariant functor, it follows that

D(j1)D2(j0) = D(D(j0)j1) = D(1D(X)) = 1D2(X).

Therefore, D2(j0)[D2(X)] is a retract ofD4(X) with the retractionD(j1)
having D2(j0) for the corresponding section. In general, by considering
Dn(X) as D(Dn−1(X)), i.e., the canonical embedding jn : Dn(X) →
Dn+2(X) as “j1 : D(Dn−1(X)→ D3(Dn+1(X))”, andD(jn−1) : Dn+2(X)
→ Dn(X) as “D(j0) : D3(Dn−1(X)) → D(Dn−1(X))”, one proves (by
mimicking the appropriate part of the proof of Lemma 2) that

D(jn−1)jn = 1Dn(X)

holds true. Thus, for every n ∈ N, jn[Dn(X)] is a retract of Dn+2(X)
with the retraction D(jn−1) having jn for the corresponding section.
Further, since D2 is a covariant functor, one readily verifies that, for
every k ∈ N and every l ∈ {0, . . . , k},

D2k+1−2l(j2l)D
2k−2l(j2l+1) = D2k−2l(D(j2l)j2l+1)

= D2k−2l(1D2l+1(X)) = 1D2k+1(X),

D2k+1−2l(j2l+1)D2k−2l(j2l+2) = D2k−2l(D(j2l+1)j2l+2)

= D2k−2l(1D2l+2(X)) = 1D2k+2(X).

This shows that all D2k−2l(j2l+1) and D2k−2l(j2l+2) are sections hav-
ing D2l+1−2l(j2l) and D2l+1−2l(j2l+1) for the corresponding retractions,
respectively, and vice versa. Notice that every s ∈ Sn(X) (resp. r ∈
Rn(X)) can be explicitly written as Dm(j) (resp. Dm′(j′)) for some
appropriate m and j (resp. m′ and j′). Therefore, statement (i) holds
true.
(ii). Let firstly n = 3. We are to show that, in general, for the section
s = j3 : D3(X) → D5(X) and the retraction r = D3(j0) : D5(X) →
D3(X), the composite

rs = D3(j0)j3 : D3(X)→ D3(X)
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may be not an epimorphism. Consider the following diagram

D3(X)
D(j0)→ D(X)

j3 ↓ ↓ j1
D5(X) →

D3(j0)
D3(X)

in BF ⊆ NF . Since D3 = D2D, D5 = D2D3, j1 = jD(X), j3 = jD3(X)

and j : 1NF
 D2 is a natural transformation of the functors, we con-

clude that the diagram commutes, i.e., D3(j0)j3 = j1D(j0). Notice that,
in general, the canonical embedding j1 is not an epimorphism., and the
conclusion follows. If n = 4, then one similarly proves that, for instance,
D3(j1)j4 is not an epimorphism. Generally, if an rs : Dn(X)→ Dn(X)
factorizes through a jn−2k, 1 ≤ k ≤ n − 2, then, generally, it is not an
epimorphism. Thus, statement (ii) follows.

Recall that, for a subset S ⊆ X ∈ Ob(NF ), the annihilator of S (with
respect to X) is

S0
X ≡ S0 = {x1 ∈ D(X) | R(x1|S) = {0}} ⊆ D(X),

and that S0 is a closed subspace of D(X). The next theorem is an
immediate consequence of Theorem 5 and several known facts from [2,
Chap.6, Sect.6].

Theorem 6. (i) For every normed space X and each n ∈ N, the range
R(jn) and the annihilator R(jn−1)0 (of R(jn−1) with respect to Dn+2(X))
are closed complementary subspaces of Dn+2(X), i.e., by identifying
Dn−1(X) with R(jn−1) and Dn(X) with R(jn), the closed direct-sum
presentation

Dn+2(X) = Dn(X)uDn−1(X)0

holds true. Consequently, by iteration,

D2n+1(X) = D1 uA0 uA2 u · · ·uA2n−2,

D2n+2(X) = D2 uA1 uA3 u · · ·uA2n−1,

where (isometrically) D1
∼= D(X), D2

∼= D2(X), Ak ∼= Dk(X)0, 0 ≤
k ≤ 2n− 1, and Dk(X) is identified with its iterated canonical image in
D2n(X), k even, or D2n+1(X), k odd.
(ii) If X is a normed space admitting a retraction r0 : D2(X)→ Cl(j0[X])
≡ X̄ (in BF ), then

D2(X) ∼= X̄ uN(r0)

is a closed direct-sum presentation of D2(X). If, in addition, X is a Ba-
nach space, then D2(X) ∼= XuN(r0) is a closed direct-sum presentation,
where X is identified with R(j0).
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Proof. (i). Notice that, for a given X and each n ∈ N,

pn+2 ≡ jnD(jn−1) : Dn+2(X)→ Dn+2(X)

is a continuous linear projection. Indeed,

p2n+2 = (jnD(jn−1))(jnD(jn−1)) = jn1Dn(X)D(jn−1) = jnD(jn−1) = pn+2.

Since D(jn−1) is a surjective epimorphism. and jn is an isometric em-
bedding, it follows that

R(pn+2) = R(jn) ∼= Dn(X).

Further,

N(pn+2) = N(D(jn−1)) = {xn+2 ∈ Dn+2(X) | xn+2jn−1 = cn−10 }
= (jn−1[Dn−1(X)])0 ≡ R(jn−1)0.

Now the conclusion follows by induction and the well known general
facts. (Observe that, for instance,

p′n+2 ≡ D2(jn−2)D(jn−1) : Dn+2(X)→ Dn+2(X), n > 1,

is also a continuous linear projection yielding another closed direct-sum
presentation of Dn+2(X).)
(ii). If X admits a retraction r0 : D2(X)→ Cl(j0[X]) ≡ X̄, then

p2 ≡ j0r0 : D2(X)→ D2(X)

is a continuous linear projection. Since the both R(p2) = Cl(R(j0)) ≡ X̄
and N(p2) = N(r0) are closed in D2(X), we infer that the stated closed
direct-sum presentation follows. If such an X is a Banach space, one
may identify X ≡ X̄ ⊆ D2(X), and the conclusion follows.

Example 7. Recall that D(c) ∼= l1 (∼= D(c0)) and D(l1) ∼= l∞. Then,
by Theorem 6 (i),

D(l∞) ∼= D3(c) ∼= D(c)u c0 ∼= Au c0,

where A E l∞ and A ∼= l1. This also shows that the annihilator does not
preserve separability of a subspace.

5 The iterated dual functors and quotients

By the mentioned identifications, Theorem 6 shows thatDn+2(X)/Dn(X)
is (isometrically) isomorphic to Dn−1(X)0. Further, it is well known
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that D(X)/Z0, Z E X, is isometrically isomorphic to D(Z), and that,
for Banach spaces, D(X/Z) is isometrically isomorphic to Z0. These
facts and Theorem 5 aim our attention at the behavior of the iterated
dual functors on a quotient space (see also [2, Chapter 6., Sections 5.
and 6.]).

Lemma 8. Let Z be a closed subspace of a normed space X, and denote
by i : Z ↪→ X the inclusion, and by q : X → X/Z the quotient morphism.
Then, for every n ∈ N, the short sequences

D2n−1(Z)
D2n−1(i)←− D2n−1(X)

D2n−1(q)←− D2n−1(X/Z) and

D2n(Z)
D2n(i)−→ D2n(X)

D2n(q)−→ D2n(X/Z)

in BF are exact.

Proof. Clearly, the short sequence

Z
i
↪→ X

q→ X/Z

in NF is exact, i.e., R(i) = N(q). Since D is a contravariant functor
and the function DZ

X/Z : L(X,X/Z) → L(D(X/Z), D(X)) is linear, it
follows that

D(i)D(q) = D(qi) = D(cθ) = cθ1 ,

i.e., R(D(q)) ⊆ N(D(i)). We are to prove that the converse N(D(i)) ⊆
R(D(q)) holds as well. Let x1 ∈ N(D(i)) ⊆ X∗, i.e., D(i)(x1) = x1i = c0
which implies that x1[Z] = {0}, i.e., x1 ∈ Z0. By the universal property
of the quotient morphism q, there exists a continuous linear function

wx1 : X/Z → F, wx1([x]) ≡ wx1q(x) = x1(x).

Then, clearly, wx1 ∈ (X/Z)∗ and, moreover,

D(q)(wx1) = wx1q = x1,

implying that x1 ∈ R(D(q)), which proves the converse. Hence, the
short sequence

D(Z)
D(i)← D(X)

D(q)← D(X/Z)

in BF is exact. Further, by Lemma 1, D(i) : D(X) → D(Z) is an epi-
morphism., and thus, the range R(D(i)) = D(Z) is (trivially) closed in
D(Z). Then, by Proposition 6.5.13. of [2], the short sequence

D2(Z)
D2(i)→ D2(X)

D2(q)→ D2(X/Z)
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in BF is exact. Now, in general, by Lemma 1, D2n(q) and D2n+1(i)
are epimorphisms, i.e., R(D2n(q)) = D2n(X/Z) and R(D2n+1(i)) =
D2n+1(Z). (It suffices that R(D2n(q) is closed in D2n(X/Z) and that
R(D2n+1(i)) is closed in D2n+1(Z), which follows by Proposition 6.5.12.
of [2].) Then the final conclusion follows by Proposition 6.5.13. of [2].

We can now state the following general facts concerning the iterated
dual functors and quotients.

Theorem 9. Let Z be a closed subspace of a normed space X, and
denote by i : Z ↪→ X the inclusion, and by q : X → X/Z the quotient
morphism. Then, for each n ∈ N,
(i) the functor D2n−1 permits cancellation on the quotient objects, i.e.,

D2n−1(X)/D2n−1(X/Z)) ∼= D2n−1(Z),

where D2n−1(X/Z) is identified with R(D2n−1(q)) in D2n−1(X);
(ii) the functor D2n “preserves” the quotient of objects, i.e.,

D2n(X/Z) ∼= D2n(X)/D2n(Z),

where D2n(Z) is identified with R(D2n(i)) in D2n(X).
(iii) D(X/Z) ∼= Z0, D2n+1(X/Z) ∼= D2n(Z)0, D2n(Z) ∼= D2n−1(X/Z)0,
where D2n(Z) (resp. D2n−1(X/Z)) is identified with R(D2n(i)) (resp.
R(D2n−1(q)) in D2n(X) (resp. D2n−1(X)), and all the isomorphisms
are isometric.

Proof. Let i : Z ↪→ X be the inclusion and let q : X → X/Z be the
quotient function that is an open surjective epimorphism. Consider the
exact sequence

Z
i
↪→ X

q→ X/Z, R(i) ≡ i[Z] = N(q),

in NF . By Lemma 8, for each n ∈ N, the sequences

D2n−1(Z)
D2n−1(i)←− D2n−1(X)

D2n−1(q)←− D2n−1(X/Z), and

D2n(Z))
D2n(i)−→ D2n(X)

D2n(q)−→ D2n(X/Z),

in BF are exact, i.e.,

R(D2n−1(q)) ≡ D2n−1(q)[D2n−1(X/Z)]) = N(D2n−1(i)),

R(D2n(i)) ≡ D2n(i)[D2n(Z)] = N(D2n(q))

Observe that, by Lemma 1, the morphisms D2n−1(q) and D2n(i) are
closed monomorphisms, while D2n−1(i) and D2n(q) are open surjective
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epimorphisms. By the universal property of a quotient in NF , there
exists a unique continuous linear (canonical) factorization of D2n−1(i)
trough the quotient morphism

q2n−1 : D2n−1(X)→ D2n−1(X)/N(D2n−1(i)),

q2n−1(x2n−1) = [x2n−1],

such that D2n−1(i) = h2n−1q2n−1 ∈Mor(BF ), where

h2n−1 : D2n−1(X)/N(D2n−1(i))→ D2n−1(Z),

h2n−1([x2n−1]) = D2n−1(i)(x2n−1) = x2n−1D2n−2(i).

By the same reason, there exists the canonical factorization D2n(q) =
h2nq2n, where

q2n : D2n(X)→ D2n(X)/N(D2n(q)), q2n(x2n) = [x2n], and

h2n : D2n(X)/N(D2n(i))→ D2n(X/Z),

h2n([x2n]) = D2n(q)(x2n) = x2nD2n−1(q).

Since D2n−1(i) and D2n(q) are open surjective epimorphisms, so are
h2n−1 and h2n (Open-mapping theorem). Further, the above exactness,
i.e.,

R(D2n−1(q)) = N(D2n−1(i)), R(D2n(i)) = N(D2n(q)

imply, respectively, that

D2n−1(X)/R(D2n−1(q)) = D2n−1(X)/N(D2n−1(i)),

D2n(X)/R(D2n(i)) = D2n(X)/N(D2n(q)).

Therefore, h2n−1 and h2n are bijections. Finally, by the Banach inverse-
mapping theorem, h2n−1 and h2n are isomorphisms of BF . SinceD2n−1(q)
and D2n(i) are closed monomorphisms, one may identify D2n−1(X/Z)
with D2n−1(q)[D2n−1(X/Z)] in D2n−1(X) as well as D2n(Z) with
D2n(i)[D2n(Z)] in D2n(X). Consequently,

D2n−1(X)/D2n−1(X/Z)) ∼= D2n−1(Z) and

D2n(X)/D2n(Z)) ∼= D2n(X/Z).

In this way we have proven the isomorphism relations in statements (i)
and (ii).
In order to prove statement (iii) (see also Remark 10 below), let us again
consider the starting exact sequence in NF , R(i) = Z = N(q). Notice
that
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Z0 = {x1 ∈ X∗ | R(x1|Z) = {0}} = {x1 | x1i = c0}
= N(D(i)) = R(D(q)),

implying that

R(D(q)) ≡ D(q)[(X/Z)∗] = Z0 in X∗.

Since, by Lemma 1, D(q) is a closed monomorphism, one may iden-
tify (X/Z)∗ with Z0 in X∗, and then (the well known) D(X/Z) ∼= Z0

isometrically holds. Let n = 1, and let us consider the exact sequences

D(Z)
D(i)← D(X)

D(q)← D(X/Z), and

D2(Z))
D2(i)→ D2(X)

D2(q)→ D2(X/Z)

from above. By arguing as previously, we may identify D(X/Z) with
R(D(q)) and D2(Z) with R(D2(i)), and then conclude that D3(X/Z) =
D(D2(X/Z)) ∼= D2(Z)0 and D2(Z) = D(D(Z)) ∼= D(X/Z)0 isometri-
cally. In the general case of an n ∈ N, the proof goes in the quite similar
way.

Remark 10. A well-known isometry X∗/Y 0 ∼= Y ∗ for every subspace
Y of X ([5, Section 8. 12, Propozicija 17, p. 444]) is closely related to
the case n = 1 of Theorem 9. One can show that statements (i) and (ii)
of Theorem 9 with that fact imply (iii), and conversely, statement (iii)
with that fact implies (i) and (ii) of Theorem 9. Further, notice that,
by Theorem 9 (iii), (Z0

X)0D(X)
∼= D2(Z) isometrically, and especially,

(X0
X)0D(X) = D2(X).
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