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A note on curves

Nikica Uglešić

Abstract

There are several rather different approaches to the notion of a curve.
We have found the way which assures that, beside an arc, each circle
carries the unique curve. As a consequence, each 1-parametrizable set
yields at most finitely many curves. Further, all essential properties and
well known invariants of a curve are preserved.
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1 Introduction

In the mathematical literature one can find several rather different ap-
proaches to the notion of a curve. Even more, in spite of the very similar
intention and purposes, the name curve covers several different notions.
For instance,

- a curve is a mapping (continuous function) γ : [α, β] → Rk ([4,
p. 136, 6.26 Definition]);

- a curve in a space Y is the image of a mapping r : [α, β]→ Y ([2,
p. 105]);

- an algebraic or transcendent curve is a graph of an appropriate
implicit function ([1, pp. 404, 476]);

- a piecewise smooth curve is a “union” of finitely many smooth
simple curves, where a smooth simple curve is ordered pair (Γ, r),
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r : [α, β] → Γ ⊆ E = Rk is a continuously differentiable bijection
with every r′(t) 6= 0 ([3, pp. 171–173]);

- a curve in Rn is an ordered pair (Γ, [r]), where r : [α, β]→ Γ ⊆ Rn
is a continuous surjection having the singular set finite and [r] is a
certain equivalence class of r ([5, p. 253]; see also Section 2 below).

In the most general (mapping) case, the notions of a curve and a path
are identified. Further, since in that, as well as in the image case, there
are “spacefilling” (Peano) curves, the notion contradicts to the “natural”
understanding of a curve. In the case of a graph, the notion of a curve is
reduced to a specific set (which, in general, is not a continuum), that is
unsatisfactory for many purposes. The approach by means of an ordered
pair consisting of a set and a (class of) mapping(s) seems to be adequate
in mathematical analysis. However, it still admits to many curves on
some types of given sets, when one expects just a few or a unique one.
In this paper we have succeeded to find an equivalence relation that
generally solves the problem in affirmative (Section 3).

2 Preliminaries

The needed simple topological facts are well known and can be found in
[2]. Let us firstly recall the notion of a parametrizable set ([5, 4. Defini-
tion 29.1; p. 252]). A subspace Γ ⊆ Rn is said to be a 1-parametrizable
set (or one says that Γ admits a 1-parametrization), if there exists a
surjective mapping (continuous function)

r : [α, β]→ Γ, α < β,

having the singular set

S(r) ≡
{
τ ∈ [α, β] | r−1[{r(τ)}] 6= {τ}

}
finite. In that case, r is said to be a (1-)parametrization of Γ, and the
ordered pair (Γ, r) is called a (1-)parametrized set.

Example 1. One can easily verify that each circle S1 ⊆ Rn, n ≥ 2, is a
parametrizable set (in many different ways), while the Hawaiian earring,
i.e., the subspace

H = ∪k∈NS1
k ⊆ R2, S1

k ≡
{

(ξ, η) ∈ R2 | ξ2 + (η +
1

k
)2 =

1

k2

}
,

does not admit any parametrization. Further, a circle with m segments
attached at the same point is a 1-parametrizable set, if and only if m ≤ 2,
while a circle with m segments attached, each at a different point, is a
1-parametrizable set, if and only if m ≤ 1.
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Remark 2. Observe that, for every parametrization, r : [α, β]→ Γ, the
restrictions

r| 〈τk−1, τk〉 : 〈τk−1, τk〉 → r[〈τk−1, τk〉], k = 1, . . . , l + 1,

are homeomorphisms, where

{τ1, . . . , τl} = S(r), τ0 ≡ α ≤ τ1 < · · · < τl ≤ β ≡ τl+1.

Furthermore, by the general topology facts, every parametrizable set Γ ⊆
Rn is a metric continuum (i.e., a compact and connected metric space)
having dimension dim Γ = 1.

By following [5, 4. Definition 29.2 (p. 252)], let Γ ⊆ Rn be a 1-
parametrizable set, and let

ri : [αi, βi]→ Γ, i = 1, 2,

be a pair of its parametrizations. Then r2 is said to be compatible with
(or equivalent to) r1 if there exists a strictly monotone (either increasing
or decreasing) mapping

ω : [α1, β1]→ [α2, β2]

such that r2ω = r1. Given a 1-parametrizable set Γ ⊆ Rn, one straight-
forwardly verifies that being compatible is an equivalence relation on
the set of all paramatrizations of Γ. Denoting by 〈r〉 the compatibility
(equivalence) class of a parametrization r of Γ, the “standard” defini-
tion of a (geometric) curve in the euclidean space Rn reads as follows
(compare [5, 4. Definition 29.3; p. 253]): A (standard, geometric) curve
C in Rn is an ordered pair (Γ, 〈r〉), where Γ ⊆ Rn is a 1-parametrizable
set, and 〈r〉 is the compatibility class of a parametrization r : [α, β]→ Γ.
It is well known that every homeomorphic image Γ ⊆ Rn of a segment
[α, β] ⊆ R is a 1-parametrizable set having all the parametrizations mu-
tually compatible. The corresponding unique curve is called a simple
curve or an arc. However, since the continuity and strict monotonicity
conditions on ω are very restrictive, in the case of a 1-parametrizable set
making a loop, the situation changes drastically.

Example 3. Let

S1 = {z ∈ C | |z| = 1} ⊆ C = R2

be the central unit circle (the standard 1-sphere). Let the function

r : [0, 2π]→ S1

3



NIKICA UGLEŠIĆ

be defined by
r(τ) = (cos τ, sin τ) = eiτ .

Then r is a continuous surjection having S(r) = {0, 2π}, and thus, S1
is a parametrizable set and r is a parametrization of S1. Further, the
function

p : [0, 2π]→ S1,

defined by
p(τ) = (cos(τ + π), sin(τ + π)) = ei(τ+π),

is a parametrization of S1 as well (having the same singular set {0, 2π}).
An easy analysis shows that, for every strictly monotone mapping

ω : [0, 2π]→ [0, 2π],

pω 6= r holds. Thus, we have obtained two different (standard) curves,
(S1, 〈r〉) and (S1 〈p〉), on the the same circle S1. Moreover, one readily
sees that S1 carries uncountable many mutually different (standard)
curves. (Notice that the function

q : [−π, π]→ S1,

defined by
q(τ) = (cos(τ + π), sin(τ + π)) = ei(τ+π),

is also a parametrization of S1, which is compatible with r, because

ρ : [0, 2π]→ [−π, π], ρ(τ) = τ − π,

is a strictly increasing mapping and qρ = r. Thus, the choice of a
segment [α, β] is relevant too!)

The natural questions arises: Is it possible to modify the definition
of a (standard, geometric) curve such that, beside an arc, each circle
yields the unique curve, and that all essential properties and invari-
ants of a curve are preserved? In this paper we answer the question in
affirmative.

3 The new classification of parametrizations

In order to answer the stated question in affirmative, we are looking for a
suitable classification of parametrizations that has to be strictly coarser
than the compatibility. First of all, recall that a function

w : [α, β]→ Y ⊆ R
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is said to be piecewise (strictly) monotone if there are (finitely many)
points

ξ1, . . . , ξn ∈ 〈α, β〉 , ξ0 ≡ α < ξ1 < · · · < ξn < β ≡ ξn+1,

i.e., if there is a finite subdivision of [α, β], such that all the restrictions
(onto the open intervals yielded by the subdivision)

w| 〈ξj−1, ξj〉 : 〈ξj−1, ξj〉 → Y, j = 1, . . . , n+ 1,

are (strictly) monotone. Especially, if all the restrictions are strictly
increasing (strictly decreasing), then w is said to be piecewise strictly
increasing (piecewise strictly decreasing). If, in addition, for such a
function

w : [α, β]→ [γ, δ] ⊆ R

(either piecewise strictly increasing or piecewise strictly decreasing), each
restriction w| 〈ξj−1, ξj〉, j = 1, . . . , n+ 1, is continuous, then w is said to
be a parametric substitute.

3.1 The curve

Definition 4. Let Γ ⊆ Rn be a 1-parametrizable set, and let

ri : [αi, βi]→ Γ, i = 1, 2,

be a pair of its parametrizations. Then r2 is said to be comparable to
r1, if there exists a parametric substitute

w : [α1, β1]→ [α2, β2]

such that r2w = r1.

Remark 5. It suffices to require, in Definition 4, that w is a func-
tion which is either piecewise strictly increasing or piecewise strictly de-
creasing. Namely, in that case, the continuity (and bijectivity) of all
w| 〈ξj−1, ξj〉, j = 1, . . . , n+ 1, follows straightforwardly by r2ω = r1 and
Remark 2. Consequently, the following fact holds:
If r1, r2 are parametrizations of Γ and w1, w2 are piecewise strictly
monotone functions such that r2w1 = r1 = r2w2, then

w1|([α1, β1] \ (r1)−1[r2[S(r2)]]) = w2|([α1, β1] \ (r1)−1[r2[S(r2)]]).

In other words, a piecewise strictly monotone function

w : [α1, β1]→ [α2, β2]
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(not necessarily either piecewise strictly increasing or piecewise strictly
decreasing) satisfying r2w = r1 is unique up to the finite set

(r1)−1[r2[S(r2)]] ⊆ [α1, β1]

and, moreover, its restriction to each (open) interval 〈ξj−1, ξj〉, deter-
mined by that set and S(r1), is a homeomorphism.

Lemma 6. Given a 1-parametrizable set Γ ⊆ Rn, the comparability is
an equivalence relation on the set of all parametrizations r of Γ. The
comparability (equivalence) class of an r is denoted by [r].

Proof. Let r : [α, β] → Γ be a parametrization of Γ. Since the identity
1[α,β] is strictly increasing and r1[α,β] = r, the comparability is a reflexive
relation. Let p : [γ, δ]→ Γ be a parametrization of Γ that is comparable
to r, i.e., pw = r, for some w : [α, β] → [γ, δ] according to Definition 4.
Put w− : [γ, δ]→ [α, β] to be the inverse of w on the image 〈ηj−1, ηj〉 of
each maximal interval 〈ξj−1, ξj〉 of the strict monotonicity of w, while on
the remaining (finitely many) points choose the values w−(ηj) according
to commutativity r(w−(ηj)) = p(ηj). Then w− inherits the monotonicity
properties of w and rw− = p holds. Thus, r is comparable to p, and
the symmetry is proven. Finally, let a parametrization q : [ε, κ] → Γ be
comparable to p and let p be comparable to r, i.e., pw1 = r and qw2 = p
according to Definition 4. Put w : [α, β] → [ε, κ] to be the composite
w2w1 on the appropriate maximal intervals of its strict monotonicity,
while on the remaining (finitely many) points choose the values w(ξj)
according to commutativity q(w(ξj)) = r(ξj). Then qw = r holds true.
Moreover, if w1 and w2 are of the same “monotonicity kind”, then w
is piecewise strictly increasing, while if w1 and w2 are of the different
(opposite) “monotonicity kind”, then w is piecewise strictly decreasing.
Consequently, r is comparable to q which proves the needed transitivity,
and completes the proof of the lemma.

Definition 7. A curve in Rn is every ordered pair (Γ, [r]) consisting of
a 1-parametrizable set Γ ⊆ Rn and the comparability (equivalence) class
[r] of a parametrization r : [α, β]→ Γ of Γ.

Clearly, a parametrizable set can, generally, yield more than one
curve (see Example 9 and Corollary 14 below). Nevertheless, we primar-
ily want to characterize those which admit the unique curves, i.e., those
having all the parametrizations comparable.

Lemma 8. Given a 1-parametrizable set Γ ⊆ Rn, let

ri : [α, β]→ Γ, i = 1, 2,

be a pair of its parametrizations. If S(r1), S(r2) ⊆ {α, β}, then r1 and
r2 are comparable.
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Proof. Observe, firstly, that S(r1), S(r2) ⊆ {α, β} implies S(r1) = S(r2).
In that case, indeed, either S(ri) = ∅ or S(ri) = {α, β}, i = 1, 2.
Namely, a singular set cannot be a singleton. Now, assume to the con-
trary, i.e., that either S(r1) = ∅ and S(r2) = {α, β}, or S(r1) = {α, β}
and S(r2) = ∅. In the first case, by Definition 4, r1 is a homeomorphism
(a continuous bijection on the compactum [α, β]), and thus, Γ ≈ [α, β],
while r2 is a “homeomorphism up to {α, β}” with r2(α) = r2(β), and
thus, Γ ≈ S1 (the standard circle). Consequently, S1 ≈ [α, β] - a contra-
diction. The second case leads to the same contradiction.
Suppose that S(r1) = S(r2) = ∅. Then r1 and r2 are homeomorphisms,
and thus the composite

w ≡ (r2)−1r1 : [α, β]→ [α, β]

is a homeomorphism. Since every bijection on a segment is strictly mono-
tone, it follows that w is a parametric substitute. Finally, by Lemma 6
and

r2w = r2(r2)−1r1 = r1,

it follows that the parametrizations r1 and r2 are comparable.
Suppose that S(r1) = S(r2) = {α, β}. Then, by the definition and
Remark 2, ri(α) = ri(β) ≡ xi ∈ Γ, i = 1, 2, and the restrictions

ri| 〈α, β〉 : 〈α, β〉 → Γ \ {xi}, i = 1, 2,

are homeomorphisms, i.e., Γ is homeomorphic to the standard circle.
This means that ri, i = 1, 2, “winds up” the segment [α, β] onto Γ in a
unique of two possible ways: either “clockwise (-)” or “counterclockwise
(+)”. Namely, if it is not so, then the restriction ri| 〈α, β〉 is not bijective
or it is not continuous - a contradiction. Now the following two cases
may occur: either x1 = x2 ≡ x0 or x1 6= x2. If x1 = x2, then the
composite

φ ≡ (r2)−1|(Γ \ {x0})) ◦ (r1| 〈α, β〉) : 〈α, β〉 → 〈α, β〉

is well defined. Moreover, φ is a continuous bijection, and thus, it is
strictly monotone. Put

w : [α, β]→ [α, β]

to be the (unique) monotone extension of φ by values w(α), w(β) ∈
{α, β}. More precisely, among four possibilities, only two of them yield a
bijective function w, and only one of these is monotone (and continuous).
Therefore, w is a parametric substitute and, clearly, r2w = r1, which
shows that the parametrizations r1 and r2 are comparable. If x1 6= x2,
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then there exists a unique pair ξ1, ξ2 ∈ 〈α, β〉 such that r1(ξ1) = x2 and
r2(ξ2) = x1. Consider the composite

ψ ≡ (r2)−1|(Γ\{x1, x2}))◦(r1| 〈α, β〉\{ξ1}) : 〈α, β〉\{ξ1} → 〈α, β〉\{ξ2}.

It means that ψ(τ) = τ ′ if and only if, r1(τ) = r2(τ ′) and τ /∈ {α, ξ1, β},
τ ′ /∈ {α, ξ2, β}. According to the above mentioned “winding up”, one
readily sees that graph of ψ can be one of the following two (typical)
only:

Namely, among four possibilities in total, i.e., all the 2-combinations
of the {(r1)∓, (r2)∓} with respect to the “∓ winding up”, the pairs
(−,−) and (+,+) yield a piecewise strictly increasing function, while
the pairs (−,+) and (+,−) yield a piecewise strictly decreasing function.
Consequently, by choosing an extension w of ψ onto [α, β] such that

w : [α, β]→ [α, β], w(α) = w(β) = ξ2, w(ξ1) ∈ {α, β}

(one of two possible), we obtain a parametric substitute such that r2w =
r1. This shows that the parametrizations r1 and r2 are comparable, and
completes the proof of the lemma.

The next example shows that Lemma 8 does not admit a generaliza-
tion to the case S(r1) = S(r2) = {τ1, τ2} 6= {α, β}.

Example 9. Let

Γ = S1 ∪ ([1, 2]× {0}) ⊆ R2.

Then

r1 : [0, 2π + 1]→ Γ, r1(τ) =

{
(cos τ, sin τ), τ ∈ [0, 2π〉
τ − 2π + 1, τ ∈ [2π, 2π + 1]
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r2 : [0, 2π + 1]→ Γ, r2(τ) =

{
(cos τ,− sin τ), τ ∈ [0, 2π〉
τ − 2π + 1, τ ∈ [2π, 2π + 1]

,

is a pair of parametrizations of Γ. Notice that S(r1) = S(r2) = {0, 2π} 6=
{0, 2π + 1}. (Namely, ri(0) = ri(2π) = (1, 0), i = 1, 2, and r1 “winds
up” [0, 2π] ⊆ [0, 2π+1] onto S1 “counterclockwise - +”, while r2 - “winds
up clockwise -”.) Let

ω : [0, 2π + 1]→ [0, 2π + 1]

be a function such that

r2(ω|[0, 2π + 1] \ {0, 2π, 2π + 1}) = r1|[0, 2π + 1] \ {0, 2π, 2π + 1}).

According to Remark 2 and the appropriate part of the proof of Lemma 8,
the restriction ω| 〈0, 2π〉 has to be strictly decreasing, while the restriction
ω| 〈2π, 2π + 1〉 is obviously strictly increasing. Therefore, ω is neither
piecewise strictly increasing nor piecewise strictly decreasing, so it is not
a parametric substitute. Now, by Remark 5 (the uniqueness), r1 and r2

are not comparable.

We also need a slight generalization of Lemma 8.

Lemma 10. Given a 1-parametrizable set Γ ⊆ Rn, let ri : [αi, βi] → Γ,
i = 1, 2, be a pair of its parametrizations. If S(r1) ⊆ {α1, β1} and
S(r2) ⊆ {α2, β2}, then r1 and r2 are comparable.

Proof. Let

w : [α1, β1]→ [α2, β2], w(α1) = α2, w(β1) = β2,

be the (unique) affine function. Then w is a strictly increasing homeo-
morphism. It is obvious that

r2w : [α1, β1]→ Γ

is also a parametrization of Γ (It is a continuous surjection having the
singular set S(r2w) of the same cardinality as S(r2).). Further, the
inverse

w−1 : [α2, β2]→ [α1, β1]

of w is a strictly increasing homeomorphism as well, and hence, a para-
metric substitute. Since (r2w)w−1 = r2, it follows by definition that r2

is comparable to r2w. Observe that

S(r2w) = w−1[S(r2)] ⊆ w−1[{α2, β2}] = {α1, β1}.

By Lemma 8, the parametrizations r2w and r1 are comparable. The
final conclusion follows by Lemma 6.
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We can now state and prove the main theorem (compare [5, 4. The-
orem 29.2; pp. 253–255]).

Theorem 11. For every 1-parametrizable set Γ ⊆ Rn, the following
statements are mutually equivalent:

(a) Every two parametrizations of Γ are comparable.

(b) For every parametrization r : [α, β] → Γ, the singular set S(r) ⊆
{α, β}.

(c) There exists a parametrization p : [γ, δ] → Γ having the singular
set S(p) ⊆ {γ, δ}.

Proof. It suffices to prove the equivalences (a) ⇔ (b) and (b) ⇔ (c).
Since the implication (b) ⇒ (a) holds by Lemma 10, , while (b) ⇒ (c)
holds trivially, it remains to prove the implications (a) ⇒ (b) and (c) ⇒
(b).
(a) ⇒ (b). Let us assume to the contrary, i.e., let (a) hold and let there
exist a parametrization r : [α, β]→ Γ such that S(r) ⊇ {τ1, τ2} * {α, β}
and r(τ1) = r(τ2). Then α < τ1 < τ2 ≤ β or α ≤ τ1 < τ2 < β. Consider
the function

ω : [α, β]→ [α, β], w(τ) =

 τ , α ≤ τ ≤ τ1
τ1 + τ2 − τ , τ1 < τ < τ2

τ , τ2 ≤ τ ≤ β
.

Notice that ω is a piecewise strictly monotone bijection, which is neither
piecewise strictly increasing nor piecewise strictly decreasing. Therefore,
ω is not a parametric substitute. Let

p : [α, β]→ Γ, p(τ) =

 r(τ), α ≤ τ ≤ τ1
r(τ1 + τ2 − τ), τ1 < τ < τ2

r(τ), τ2 ≤ τ ≤ β
.

Since r(τ1) = r(τ2), the function p is continuous, and it is a surjection.
Further, p = rω obviously holds, and since ω is bijective, S(p) = ω[S(r)],
and thus, |S(p) = ||S(r)|. Therefore, p is a parametrization of Γ. How-
ever, since ω is not a parametric substitute, it follows (see Remark 5)
that p and r are not mutually comparable parametrizations of Γ — a
contradiction.
(c) ⇒ (b). Let there exist a parametrization p : [γ, δ] → Γ having the
singular set S(p) ⊆ {γ, δ}. Then, either S(p) = ∅ or S(p) = {γ, δ} (see
the beginning of the proof of Lemma 8), We are to prove that, for every
parametrization r : [α, β] → Γ, either S(r) = ∅ (whenever S(p) = ∅)
or S(r) = {α, β} (whenever S(p) = {γ, δ}) holds true. Let, firstly,
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S(p) = ∅. Then p is a continuous bijection, and since Γ is a compactum,
p is a homeomorphism. Thus, Γ ≈ [α, β]. Assume to the contrary, i.e.,
let there exist a parametrization r : [α, β] → Γ having the singular set
S(r) 6= ∅. Then there are τ1, τ2 ∈ S(r), τ1 < τ2, such that

r| 〈τ1, τ2〉 : 〈τ1, τ2〉 → r[〈τ1, τ2〉] ⊆ Γ

is a homeomorphism, and S1 ≈ r[[τ1, τ2]] ≡ Γ0 ⊆ Γ ≈ [α, β].
It follows that the segment [α, β] contains a subspace which is homeo-
morphic to the circle S1. Consequently, S1 admits a continuous injec-
tion to [α, β] - a contradiction. Let S(p) = {γ, δ}. Then Γ ≈ S1.
Assume again to the contrary, i.e., let there exist a parametrization
r : [α, β] → Γ having the singular set S(r) 6= {α, β}. Then either
S(r) = ∅ or S(r) ⊇ {τ1, τ2} 6= {α, β}. By the previously proven case,
S(r) = ∅ implies S(p) = ∅ — a contradiction. It remains the subcase
S(r) ⊇ {τ1, τ2} 6= {α, β}. We may assume, without loss of generality
that τ1 < τ2 and there is no singular point between them. Then

r| 〈τ1, τ2〉 : 〈τ1, τ2〉 → r[〈τ1, τ2〉] ⊆ Γ

is a homeomorphism, and thus, r[[τ1, τ2]] ≡ Γ0 ≈ S1. Since {τ1, τ2} 6=
{α, β}, it follows that r[〈α, τ1〉] or r[〈τ2, β〉] is a non-empty subset of
Γ\Γ0. (If it is not so, the singular set S(r) must be infinite, and r cannot
be a parametrization of Γ.) Therefore, Γ0 $ Γ holds, and consequently,

S1 ≈ Γ0 $ Γ ≈ S1

— a contradiction (Every non-trivial subset A of S1 is not homeomor-
phic to S1. Indeed, if A is connected, then it is an arc on S1 that is
homeomorphic to a segment or an interval, while, if A is not connected,
then it cannot be homeomorphic to the connected S1.)

By Theorem 11, the next definition is correct (compare [5, 4. Defini-
tions 29.4 and 29.5; pp. 255–256]).

Definition 12. A 1-parametrizable set Γ ⊆ Rn that admits a parametriza-
tion r having the singular set S(r) empty is said to be a simple curve
(with the boundary) or an arc. In that case, r(α), r(β) ∈ Γ are said to
be the boundary or end points of Γ. If Γ admits a parametrization
r : [α, β]→ Γ having the singular set S(r) = {α, β}, then Γ is said to be
a simply closed curve.

Corollary 13. Let Γ ⊆ Rn be a subset.

(i) Γ is a simple curve, if and only if there exists a continuous bijection
r : [α, β]→ Γ;

11



NIKICA UGLEŠIĆ

(ii) Γ is a simply closed curve, if and only if there exists a continuous
surjection r : [α, β] → Γ having the restriction r| 〈α, β〉 : 〈α, β〉 →
Γ injective and r(α) = r(β).

Corollary 14. Every 1-parametrizable set Γ ⊆ Rn admits at most
finitely many curves (Γ, [r]).

Proof. Since, by definition, every 1-parametrizable set Γ ⊆ Rn is a “very
specific” (compare Example 1 above) union of finitely many sets homeo-
morphic to a segment (simple curves) and finitely many sets homeomor-
phic to a circle (simply closed curves), the conclusion follows straight-
forwardly by Theorem 11, Definitions 7 and 17 and Corollary 13.

Example 15.

(a) Let Γ ⊆ Rn be a circle with an attached segment (see the last
sentence of Example 1 and Example 9), or simply,

Γ = S1 tA AB ⊆ R2, A ∈ S1.

Then, for every parametrization r : [α, β] → Γ, either r(α) = A
and r(β) = B, or r(α) = B and r(β) = A. One straightforwardly
verifies that in each case there are exactly two comparability classes
on Γ. Since each class of the first case equals to a unique (the
“opposite” parametrization) class of the second case, it follows that
Γ carries exactly two curves.

(b) Let Γ ⊆ Rn be a circle with two attached segments (at the same
point — see the last sentence of Example 1), or simply,

Γ = S1 tA (AB tA AC) ⊆ R2, A ∈ S1.

Then, for every parametrization r : [α, β] → Γ, either r(α) = B
and r(β) = C, or r(α) = C and r(β) = B. One straightforwardly
verifies that in each case there are exactly two comparability classes
on Γ. Since each class of the first case equals to a unique class of
the second case, it follows that Γ carries exactly two curves.

(c) Let Γ ⊆ Rn be a “figure-8” set, or simply,

Γ = X t(0,0) Y ⊆ R2,

where

X = {(ξ, η) | (ξ + 1)2 + η2 = 1},

Y = {(ξ, η) | (ξ − 1)2 + η2 = 1}.

12
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Then, for every parametrization r : [α, β] → Γ, either r(α) =
r(β) = (ξ0, η0) 6= (0, 0) or r(α) = r(β) = (0, 0). In the first
case, S(r) = {α, τ1, τ2, β} such that r(α) = r(β) = (ξ0, η0) 6=
(0, 0) = r(τ1) = r(τ2), while in the second case, S(r) = {α, σ1, β}
such that r(α) = r(σ1) = r(β) = (0, 0). One easily verifies that
in each case there are exactly two comparability classes on Γ. A
little more careful examination shows that, in the first case, the
classes do not depend on the point r(α) = r(β) ∈ X \ {(0, 0)} nor
on r(α) = r(β) ∈ Y \ {(0, 0)}. Then, further, one easily concludes
that the classes do not depend on r(α) = r(β) ∈ Γ at all. Finally,
one straightforwardly shows that each class of the first case equals
to a unique class of the second case. Therefore, a “figure-8” set
carries exactly two curves.

The following example generalizes those given in Example 15.

Example 16.

(i) Let Γ ⊆ Rn be an arc with m circles attached, each at differ-
ent point. Then the following three (mutually non-homeomorphic)
types can occur:

(a) no attaching point is an end point of the arc;

(b) only one of the attaching points is an end point of the arc;

(c) exactly two of the attaching points are the end points of the
arc.

Type (a) is equivalent to the segment [0, 3m−1] ⊆ R with the circles
{(ξ, η) | (ξ−(3j−2))2+(η+1)2 = 1} ⊆ R2, j = 1, . . . ,m, considered
as the subspace of R2. Observe that, for every parametrization
r : [α, β]→ Γ,

S(r) = {τ1, τ2, . . . , τ2m−1, τ2m}

such that either r(α) = (0, 0), r(τ2j−1) = r(τ2j) = (0, 3j − 2),
j = 1, . . . ,m, and r(β) = (0, 3m − 1), or r(α) = (3m − 1, 0),
r(τ2j−1) = r(τ2j) = (0, 3(m − j) + 1), j = 1, . . . ,m, and r(β) =
(0, 0). In each case there are exactly 1·2·· · ··2·1 = 2m comparability
classes on Γ. Since each class of the first case equals to a unique
(the “opposite” parametrization) class of the second case, it follows
that Γ carries exactly 2m curves. By a similar examination, one
easily establishes the same number of curves for types (b) and (c)
as well.

13
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(ii) Let Γ ⊆ Rn be an m-bouquet (finite, m ∈ N) of circles, or simply,

Γ = ∪mj=1S
1
j ⊆ R2, S1

j ≡
{

(ξ, η) ∈ R2
∣∣∣ ξ2 + (η +

1

j
)2 =

1

j2

}
.

Then, for every parametrization r : [α, β]→ Γ,

S(r) = {α, τ1, τ2, . . . , τ2m−3, τ2m−2, β}

such that r(α) = r(β) and r(τ2j−1) = r(τ2j) = (0, 0), j = 1, . . . ,m−
1. Further, with respect to the comparability, r(α) = r(β) ∈ Γ may
be any point (see Example 15 (c)). Now, a straightforward analysis
shows that Γ carries exactly 1 · 2 · · · · · 2 = 2m−1 curves.

3.2 The oriented curve

We have defined a curve to be an ordered pair (Γ, [r]) consisting of a
1-parametrizable set Γ ⊆ Rn and the comparability (equivalence) class
[r] of a parametrization r of Γ. Hereby r1, r2 ∈ [r] if and only if there
exists a parametric substitute, that is an either piecewise strictly increas-
ing or piecewise strictly decreasing function w, such that r2w = r1. We
shall now separate those two possibilities (compare [5, 4. Definition 29.6;
p. 256]).

Definition 17. A parametrization r2 : [α2, β2]→ Γ is said to be coher-
ent with a parametrization r1 : [α1, β1] → Γ, if there exists a piecewise
strictly increasing function w : [α1, β1]→ [α2, β2] such that r2w = r1.

Lemma 18. Given a 1-parametrizable set Γ ⊆ Rn, the coherency is
an equivalence relation on the set of all parametrizations r of Γ. The
coherency (equivalence) class of an r is denoted by dre.

Proof. Lemma can be proven in the same way as Lemma 6, so we omit
the explicit proof.

Theorem 19. Let Γ ⊆ Rn be a 1-parametrizable set. Then,

(i) For every pair r1, r2 of parametrizations of Γ, if r2 is coherent with
r1, then r2 is comparable to r1, i.e., for every parametrization r of
Γ, dre ⊆ [r] holds.

(ii) Each comparability class [r] splits into exactly two coherency classes
dre and dpe, i.e., for every parametrization r of Γ, there exists a
p ∈ [r] such that [r] = dre ∪ dpe and dre ∩ dpe = ∅.

Proof. Statement (i) follows by Definitions 4 and 17, while statement
(ii) follows by (i) and the same definitions.
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Definition 20. An oriented curve is an ordered pair (Γ, dre) consist-
ing of a 1-parametrizable set Γ ⊆ Rn and the coherency class dre of a
parametrization r of Γ. The coherency class dre is said to be the ori-
entation of (Γ, dre). Hereby, x1 ≡ r(α) ∈ Γ is said to be the starting
point, while x2 ≡ r(β) ∈ Γ is said to be the ending point of the oriented
curve (Γ, dre).

Observe that, by Theorem 19 (ii), each curve (Γ, [r]) admits ex-
actly two orientations, i.e., (Γ, [r]) “carries” exactly two oriented curves
(Γ, dre) and (Γ, dpe), [p] = [r] = dre ∪ dpe, dre ∩ dpe = ∅. Then one usu-
ally says that a parametrization r1 ∈ dre and a parametrization p1 ∈ dpe
are mutually opposite, and the brief notations

y
Γ and

x
Γ are used as well.

As an immediate consequence (see also Corollary 2), for instance, every
“figure 8” subspace of Rn, n ≥ 2, is a 1-parametrizable set carrying
exactly two curves and exactly four oriented curves. Notice that, for a
continuously differentiable parametrization r, the orientation dre is de-
termined by sgn(w′). Further, observe that if (Γ, [r]) is a simply closed
curve, then r(β) = r(α), for every parametrization r. So the “starting”
= “ending” point makes sense for each parametrized set (Γ, r) only.

3.3 About invariants

Concerning the well known invariants of curves (the flexion and torsion
at a sufficiently smooth point, the length when a parametrization has a
bounded variation, the line integrals when a parametrization is piecewise
differentiable, . . . ), nothing essentially changes (see (a), (b), (c), (d) and
(e) below). We shall hereby, for instance, consider the length of a curve
only. Firstly, recall the notion of a variation of a function. Let T ⊆ R
denote any of 〈α, β〉, 〈α, β], [α, β〉 or [α, β] in R, and let

D = {τ0, τ1, . . . , τl}, τ0 < τ1 < · · · < τl,

be any partition of T such that τ0 = α whenever either T = [α, β〉 or
T = [α, β], while τl = β whenever either T = 〈α, β] or T = [α, β]. It is
obvious that the set D(T ) of all partitions D of T is partially ordered by
inclusion. Given a function f : T → Rn, the variation of f with respect
to D is defined by

V (f ;D) ≡
l∑

k=1

‖f(τk)− f(τk−1)‖ ∈ {0} ∪ R+.

Clearly, if D′ ⊇ D, then V (f ;D′) ≥ V (f ;D). If the set

{V (f ;D) | D ∈ D(T )} ⊆ {0} ∪ R+
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is bounded, then f is said to be a function of bounded variation. In that
case, the (unique) real number

V (f) ≡ sup{V (f,D) | D ∈ D(T )} ∈ {0} ∪ R+

is said to be the (total) variation of f .

Example 21. One straightforwardly shows that the well known Koch
curve (either simple - homeomorphic to a segment, or simply closed -
homeomorphic to a circle) does not admit any parametrization being a
function of bounded variation. Further, the continuously differentiable
function

g : T1 = 〈0, 1]→ R, g(τ) = τ cos
2π

τ
,

is not a function of bounded variation. (Notice that T1 is not a segment.)
Similarly, the function

h : T2 = [0, 1]→ R, h(τ) =

{
τ cos 2π

τ , τ 6= 0
0, τ = 0

(the trivial extension of f to [0, 1]) is not a function of bounded variation.

The following facts of real analysis are well known:

(a) A (vectorial) function f = (f1, . . . , fn) : T → Rn is a function of
bounded variation, if and only if every (scalar) function fj : T → R,
j = 1, . . . , n, is a function of bounded variation.

(b) Every monotone function f : T → R is a function of bounded vari-
ation.

(c) Every continuously differentiable function f : T = [α, β]→ Rn is a
function of bounded variation.

(d) Every piecewise continuously differentiable function f : T = [α, β]→
Rn is a function of bounded variation. (Hereby “piecewise” means
that there exists a partition D = {τ0, τ1, . . . , τl} ∈ D(T ) such that
each restriction f |[τk−1, τk], k = 1, . . . , l, is continuously differen-
tiable.)

(e) Let, for a given pair fi : Ti → Rn, i = 1, 2, there exist a monotone
bijection w : T1 → T2 such that f1 = f2w. Then f2 is a function
of bounded variation, if and only if f1 is a function of bounded
variation, and in that case V (f2) = V (f1).

The facts from above admit a correct definition of the length of a
1-parametrized set as well as the length of a curve.
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Definition 22. A 1-parametrized set (Γ, r) is said to have a length (or
that it is rectifiable), if the parametrization r : [α, β]→ Γ is a function
of bounded variation. In that case, the (total) variation V (r) is said to
be the length of (Γ, r), usually denoted by L(Γ, r).

The mentioned facts readily imply the following:

(i) Let 1-parametrized sets (Γ, ri) have lengths L(Γ, ri), i = 1, 2. If
there exists a piecewise monotone function ω : [α1, β1] → [α2, β2]
such that r2ω = r1, then L(Γ, r2) = L(Γ, r1).

(ii) Let ri : [αi, βi] → Γ, i = 1, 2, be a pair of parametrization of a
1-parametrizable set Γ ⊆ Rn. If r1 and r2 are mutually comparable
and they both are functions of bounded variation, then L(Γ, r2) =
L(Γ, r1).

Consequently, the property to have a length and, in that case, the
notion of a length for a curve (Γ, [r]) can be correctly defined by V (r)
via any parametrization r : [α, β]→ Γ.

Remark 23. The question arises, whether this approach to the notion of
a curve admits a generalization in order to define the notion of a surface
in Rn. It seems to be possible in several special cases (a simple surface,
sphere, cylinder, Möbius band, torus, Klein bottle). However, in general,
given an Σ ⊆ Rn admitting a surjective mapping

r : [α, β]× [γ, δ]→ Σ,

we do not know all needed conditions on the singular set S(r) making Σ
“2-parametrizable”.
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knjiga, Zagreb, 1975.

[4] W. Rudin, Principles of Mathematical analysis (third ed.), McGrae-
Hill Kogakusha, Tokyo, 1976.
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