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On effective approximation to

quadratic numbers
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Abstract

Let p be a prime number and | · |p the p-adic absolute value on Q and
on the p-adic field Qp normalized such that |p|p = p−1. Let ξ be a
quadratic real number and α a quadratic p-adic number. We prove that
there exist positive, effectively computable, real numbers c1 = c1(ξ),
τ1 = τ1(ξ), c2 = c2(α), τ2 = τ2(α), such that

|yξ − x| · |y|p ≥ c1|y|−2+τ1 , for x, y ∈ Z6=0,

and
|bα− a|p ≥ c2|ab|−2+τ2 , for a, b ∈ Z6=0.

Both results improve the effective lower bounds which follow from an
easy Liouville-type argument.

Keywords: rational approximation, quadratic number, p-adic number, linear
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1 Introduction

Let ξ be an irrational, real, algebraic number of degree d. Liouville [12]
proved that there exists a positive number c1 = c1(ξ), which can be
given explicitly, such that

|yξ − x| > c1|y|−d+1, for x, y ∈ Z6=0. (1)
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Since, by the theory of continued fractions, there are integers x, y with
|y| arbitrarily large such that |yξ − x| < |y|−1, Liouville’s result is best
possible when d = 2. For d ≥ 3, after earlier works by Thue, Siegel,
Gelfond, and Dyson, (1) was considerably improved by Roth [18], who
showed that, for every ε > 0, there exists a positive number c2 = c2(ξ, ε)
such that

|yξ − x| > c2|y|−1−ε, for x, y ∈ Z6=0. (2)

However, his method of proof does not yield an explicit value for c2.
Usually, instead of saying that some constant can be given explicitly,
we simply say that it is effectively computable. In the sequel, we use
the notation �eff

a,b,... and �eff
a,b,... (resp., �ineff

a,b,... and �ineff
a,b,...) to indicate

that the positive numerical constants implied by � and � can be given
explicitly (resp., cannot be given explicitly from the known proofs) and
depend at most on the parameters a, b, . . .. To give an effective version
of Roth’s theorem is an outstanding open problem.

In this direction, by using the theory of linear forms in logarithms devel-
oped by A. Baker in a series of papers starting with [3], Feldman [11] (see
also [4]) proved that, for d ≥ 3, there exists a (small) positive, effectively
computable τ = τ(ξ), such that

|yξ − x| �eff
ξ |y|−d+1+τ , for x, y ∈ Z6=0. (3)

This is stronger than (1). A natural question is then to find a way, in
the case d = 2, to obtain stronger effective and ineffective statements,
but which are valid for only a restricted class of integer pairs (x, y).

This was done by Ridout [16], whose main theorem yields the following
result. For a prime number p, the field Qp of p-adic numbers is equipped
with the ultrametric absolute value | · |p normalized such that |p|p = p−1.

Theorem 1 (Ridout). Let ξ be a real, irrational, algebraic number. Let
p1, . . . , pt denote distinct prime numbers. For every ε > 0, we have

|yξ − x| · |xy|p1 . . . |xy|pt �ineff
ξ,p1,...,pt,ε |y|

−1−ε, for x, y ∈ Z6=0. (4)

Since we can assume that |yξ − x| < |x|/2 in (4), the term |y| can be
replaced by max{|x|, |y|} to get a more symmetric (but equivalent) state-
ment. Theorem 1 is clearly stronger than (2) since |xy|p1 . . . |xy|pt ≤ 1.

Regarding approximation to an irrational, algebraic, real number ξ by
rational numbers whose denominator is a power of a given integer b ≥ 2,
Theorem 1 implies that, for every ε > 0, we have

‖bnξ‖ �ineff
ξ,b,ε b

−εn, for n ≥ 1.
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Here and below, ‖ · ‖ denotes the distance to the nearest integer. If ξ is
of degree d at least 3, then (3) gives an effective improvement over the
lower bound ‖bnξ‖ �eff

ξ,b b
−(d−1)n, which follows from (1). It remains for

us to consider the quadratic case. This was first addressed by Schinzel
[19], who established that, for every integer b ≥ 2 and every quadratic
real number ξ, we have

‖bnξ‖ > b−n exp
(
cn1/7

)
, for n ≥ 1,

where c = c(ξ, b) is a positive, effectively computable, real number.

By following his approach and applying refined estimates of linear forms
in logarithms, Bennett and Bugeaud [5] derived the stronger lower bound

‖bnξ‖ �eff
ξ,b b

−(1−τ)n, for n ≥ 1, (5)

where τ = τ(ξ, b) is a positive, effectively computable, real number.

Our first result is an effective version of a (much) weaker form of Theorem
1.

Theorem 2. Let ξ be a real, irrational, algebraic number of degree d.
Let p1, . . . , pt denote distinct prime numbers. There exists an effectively
computable, positive number τ = τ(ξ, p1, . . . , pt) such that

|yξ − x| · |y|p1 . . . |y|pt �eff
ξ,p1,...,pt |y|

−d+τ , for x, y ∈ Z6=0. (6)

Since |y| · |y|p1 . . . |y|pt ≥ 1, Theorem 2 immediately follows from (3)
when ξ has degree at least 3. Thus, it only remains for us to prove (6)
for quadratic numbers ξ. This is done in Subsection 3.1.

By taking y = bn in (6) and letting p1, . . . , pt be the prime factors of b,
we see that Theorem 2 implies (5).

We now focus our attention on the approximation to an irrational p-
adic number α. It follows from the Dirichlet box principle that, for
every positive integers A,B, there are integers a, b, not both 0, such
that (below, we choose to simply write �α and not �α,p, since p is
implicitly given when α is given)

|bα− a|p �α (AB)−1, |a| ≤ A, |b| ≤ B.

Consequently, there exist infinitely many pairs of nonzero integers (a, b)
such that

|bα− a|p �α (max{|a|, |b|})−2,
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and infinitely many pairs of nonzero integers (a, b) such that

|bα− a|p �α |ab|−1.

In the sequel, we assume that α is algebraic of degree d ≥ 2 and state
what can be viewed as the p-adic analogue of Theorem 2.

It follows from a Liouville-type argument that

|bα− a|p �eff
α (max{|a|, |b|})−d, for a, b ∈ Z6=0. (7)

Unlike in the real case, the fact that |bα − a|p is small does not imply
that |a| and |b| are comparable. Take for instance the p-adic number

α = p+ p3 + p32

+ . . . =
∑
h≥0

p3h

,

and define

aH =

H∑
h=0

p3h

, bH = 1, H ≥ 1.

Then, we get

|bHα− aH |p = p−3H+1

� a−3
H � (aHbH)−3, H ≥ 1,

where the notation � means that both inequalities � and � hold.

Since max{|a|, |b|} ≤ |ab| for every nonzero integers a, b, we deduce from
(7) that

|bα− a|p �eff
α |ab|−d, for a, b ∈ Z6=0. (8)

The ineffective result obtained by Ridout’s theorem [17] yields consider-
ably stronger (but ineffective) inequalities than (7) and (8).

Theorem 3 (Ridout). Let p be a prime number and α a p-adic, irra-
tional, algebraic number. For every ε > 0, we have

|bα− a|p �ineff
α,ε (max{|a|, |b|})−2−ε, for a, b ∈ Z6=0,

and

|bα− a|p �ineff
α,ε |ab|−1−ε, for a, b ∈ Z6=0. (9)

As pointed out to me by Jan-Hendrik Evertse, the assertion (9) follows
from [17, Eq. (2)] by taking ζ = 0 and ζ1 = α.
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As above, the theory of linear forms in logarithms allows one to improve
the Liouville bound. It yields that, if α is of degree d at least 3, then
there exists a positive, effectively computable τ = τ(α) such that

|bα− a|p �eff
α (max{|a|, |b|})−d+τ �eff

α |ab|−d+τ , for a, b ∈ Z6=0,

see [20, Section V.2]. However, (7) is best possible when α is quadratic.
Our next result gives an effective improvement on (8).

Theorem 4. Let p be a prime number and α be a quadratic p-adic
number. Then, there exists a positive, effectively computable number
τ = τ(α) such that

|bα− a|p �eff
α |ab|−2+τ , for a, b ∈ Z6=0.

Theorem 4 is a special case of the following result which is stated in
a slightly different way. Let p be a prime number and K an algebraic
number field. Let OK denote the ring of integers of K. Let p be a prime
ideal of the ring of integers in K lying above p, and denote by ep its
ramification index. For a non-zero algebraic number ξ in K, let vp(ξ)
denote the exponent of p in the decomposition of the fractional ideal
ξOK in a product of prime ideals and set

vp(ξ) =
vp(ξ)

ep
.

This defines a valuation vp on K which extends the p-adic valuation vp
on Q normalized in such a way that vp(p) = 1. For a nonzero element ξ
in K, we set |ξ|p = p−vp(ξ).

Theorem 5. Let ξ be a quadratic complex number. Let p1, . . . , pt denote
distinct prime numbers. There exists an effectively computable, positive
number τ = τ(ξ, p1, . . . , pt) such that

|yξ − x|p1 . . . |yξ − x|pt �eff
ξ,p1,...,pt |xy|

−2+τ , for x, y ∈ Z6=0.

The proof of Theorem 5 is, in some respect, dual to that of Theorem 2.
It also heavily depends on Baker’s theory of linear forms in logarithms.
Archimedean estimates are used in the proof of Theorem 5, while that
of Theorem 2 depends on non-Archimedean estimates.

As expected, there is a big gap between the effective and the ineffective
results in all of these Diophantine questions.

Theorems 2 and 4 were partly motivated by the works [13, 15], in which
the products

|y| · |yξ − x| · |y|p and |ab| · |bα− a|p
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have been already studied, but in a different direction. Namely, de
Mathan and Teulié [15], inspired by the Littlewood conjecture in Dio-
phantine approximation, formulated the following (still open) problem,
often referred to as the p-adic Littlewood conjecture. In Problems 1 and
2 below, the numbers ξ and α are not supposed to be algebraic.

Problem 1. Let p be a prime number and ξ a real number. Is it true
that

inf
y≥1

y · ‖yξ‖ · |y|p = 0 (10)

always holds?

Partial results towards Problem 1 have been established in [2, 9, 15].
In particular, it has been proved in [15] that a stronger form of (10)
holds for real quadratic numbers ξ. According to de Mathan [14], it may
be preferable to ask a slightly weaker problem than Problem 1, namely
whether

inf
x 6=0
y≥1

y · |yξ − x| · |xy|p = 0

always holds. Note that in (6) with t = 1, we can replace |y|p1 by |xy|p1 .

The next (and still open) problem was first studied by de Mathan [13].

Problem 2. Let p be a prime number and α a nonzero p-adic number.
Is it true that

inf
a6=0
b6=0

|ab| · |bα− a|p = 0 (11)

always holds?

De Mathan [13] proved that a stronger form of (11) holds for quadratic
p-adic numbers α. Several additional results have been subsequently ob-
tained in [1, 14].

In [5], for every integer b ≥ 2 and every given ε > 0, the authors have
constructed explicit examples of quadratic real numbers ξ such that

‖bnξ‖ � b−εn, for n ≥ 1.

In view of this result and of Theorems 2 and 4, we propose the following
open questions.

Problem 3. Let ε > 0 be a given real number. Let p1, . . . , pt be distinct
prime numbers. To find explicit examples of quadratic real numbers ξ
such that

|yξ − x| · |y|p1 . . . |y|pt �eff
ξ,p1,...,pt,ε |y|

−1−ε, for x, y ∈ Z6=0.
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Problem 4. Let ε > 0 be a given real number. To find explicit examples
of quadratic p-adic numbers α such that

|bα− a|p �eff
α,ε |ab|−1−ε, for every a, b ∈ Z6=0.

The sequel of the paper is organized as follows. In Section 2, we gather
estimates from the theory of linear forms in logarithms. The proofs of
our theorems are given in Section 3.

2 Auxiliary results

In this section, we recall, in a simplified form, estimates from the theory
of linear forms in logarithms. The first one is an immediate consequence
of results of Waldschmidt [21, 22]; see also [6, Theorems 2.1 and 2.2].

As usual, h(α) denotes the (logarithmic) Weil height of the algebraic
number α.

Theorem 6. Let n ≥ 1 be an integer. Let α1, . . . , αn be non-zero alge-
braic numbers. Let b1, . . . , bn be integers with bn 6= 0. Let A1, . . . , An be
real numbers with

logAj ≥ max{h(αj), 2}, 1 ≤ j ≤ n.

Set

B′ = max
{

3, max
1≤j≤n−1

{ |bn|
logAj

+
|bj |

logAn

}}
.

Assume that
Λ := αb11 . . . αbnn − 1 6= 0.

Then, there exists an effectively computable positive number c1, depend-
ing only on n and on the degree over Q of the number field Q(α1, . . . , αn),
such that we have

log |Λ| ≥ −c1 logA1 . . . logAn logB′.

The second estimate was established in [8].

Theorem 7. Let p be a prime number. Let α1 and α2 be multiplicatively
independent algebraic numbers with vp(α1) = vp(α2) = 0. Let A1 and
A2 be real numbers with

logAj ≥ max{h(αj), 2}, j = 1, 2.

Let b1 and b2 be positive integers and set

B′ = max
{

3,
b1

logA2
+

b2
logA1

}
.
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Then, there exists an effectively computable positive number c2, depend-
ing only on the degree D over Q of the number field Q(α1, α2), such that

vp(α
b1
1 − α

b2
2 ) ≤ c2pD (logA1)(logA2) (logB′)2. (12)

In comparison with more classical estimates of lower bounds for linear
forms in logarithms, the crucial point in Theorem 6 (and similarly in
Theorem 7) is the replacement of the term B = max{3, |b1|, . . . , |bn|} by
B′. Clearly, B′ is much smaller than B when bn = 1 and logAn is large,
which is precisely the situation occurring in Section 3; see also [7] for
more explanations and further examples of Diophantine questions where
the refined estimate with B′ appears to be crucial. The square in (12)
is irrelevant for our purpose.

Moreover, we recall [6, Theorem 2.8] in a simplified form.

Theorem 8. Let p be a prime number, b ≥ 2 an integer and α a complex
algebraic number of degree D. If αb is not equal to 1, then

vp(α
b − 1)� DpDh(α)(log b).

3 Proofs

Throughout this section, all the numerical constants are effective, but
we do not indicate this.

3.1 Proof of Theorem 2

We adapt Schinzel’s argument [19] and the proof of [5, Theorem 1.2]. It
is sufficient to treat the case ξ =

√
a, where a ≥ 2 is a non-square integer.

Let x, y be positive integers with y ≥ 3 and |x−
√
ay| ≤ 1. Without any

loss of generality, we assume that x and y are coprime. Write

y = Ap`11 . . . p`tt ,

where gcd(A, p1 . . . pt) = 1. We may assume that A ≤ y1/2, since other-
wise we get

|y| · |y|p1 . . . |y|pt �a |y|1/2

and the theorem follows. Then, there exists i with 1 ≤ i ≤ t such that

`i �S log y, (13)

where S denotes the set of primes {p1, . . . , pt}.
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Write

x2 − ay2 = (x+
√
ay) · (x−

√
ay) =: ∆.

Let η denote the fundamental unit of the quadratic field generated by√
a. Recall that its Galois conjugate is ±η−1. Write

x−
√
ay = δηm, x+

√
ay = ±δση−m,

where δ in Q(
√
a) and the integer m are such that

|∆|1/2 · η−1/2 < |δ| ≤ |∆|1/2 · η1/2, δδσ = ∆. (14)

Here and below, δσ denotes the Galois conjugate of δ. Observe that
m ≤ 0 and

−2
√
ay

x+
√
ay

=
x−
√
ay

x+
√
ay
− 1 = ± δ

δσ
η2m − 1. (15)

If m = 0, then we immediately derive that log y �a,S log |2∆|.
Set M := max{2, |m|}. Since |δσ| ≥ η−1/2 and

|δση−m| = |x+
√
ay| �a y

we get

M �a log y.

If |∆| = 1 and m < 0, then δ = ±1 and we deduce from (13) and
Theorem 8 that

log y �S `i ≤ vpi(η
2m ± 1)�a,S logM �a,S log log y,

which gives an effective upper bound for y, depending only on a and S.

We assume now that |∆| ≥ 2 and m < 0. Note that vpi(δ) = 0 since
x and y are coprime. It follows from (14) that η−1 ≤ |δ/δσ| ≤ η.
Since δ∆/δσ is an algebraic integer, the height of δσ/δ is �a log |∆|.
Furthermore, δσ/δ is not a unit, since |∆| ≥ 2. Consequently, η and
δσ/δ are multiplicatively independent. By Theorem 7, we get

vpi

(δσ
δ
±η2m

)
≤ vpi

((δσ
δ

)2

−η4m
)
�a,pi (log |∆|)

(
log
(

2+
M

log |∆|

))2

.

On the other hand, we derive from (13) and (15) that

vpi

(δσ
δ
± η2m

)
= `i �a,S log y.
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By combining the last two inequalities, we get

log y �a,S (log |∆|)
(

log
(

2 +
M

log |∆|

))2

,

and, since M �a log y, we obtain that

log y �a,S log |∆|.

Taking for x the nearest integer to
√
ay, all this proves the existence of

an effectively computable positive real number κ, depending only on a
and p1, . . . , pt, such that

‖y
√
a‖ = |x−

√
ay| ≥ |∆|

2
√
ay + 1

�a,S y
κ−1.

This concludes the proof of the theorem, since |y| · |y|p1 . . . |y|pt ≥ 1.

3.2 Proof of Theorems 4 and 5

We begin with the proof of Theorem 4. Let α be a quadratic p-adic
number. Let ξ and ξσ be the complex roots of its minimal defining
polynomial Pα(X) over the integers. In this section, the superscript σ

denotes the Galois conjugation in the quadratic field Q(ξ). Let S be
the set of places on Q(ξ) composed of the infinite places and the finite
places above the prime number p. Since α is assumed to be in Qp, the
polynomial Pα(X) has two roots in Qp. Consequently, the rank of the
group O∗S of S-units in Q(ξ) is equal to 3 is ξ is a real number and to 2,
otherwise. We assume that ξ is real, the other case being similar.

Let a, b be nonzero integers with |ab| ≥ 2. Assume first that |a| ≥ |b|. If
|a| < |b|2, then |ab| > |a|3/2 and, by (7), we get

|bα− a|p �α |a|−2 �α |ab|−4/3,

which is stronger than asserted. Consequently, we assume that |a| ≥ |b|2.

We also assume that |bα − a|p ≤ |ab|−3/2, otherwise there is nothing to
prove. This implies that the norm of bξ− a is divisible by a large power
of p, thus that the S-norm NS(bξ − a) (the part of the norm composed
of the primes outside S; see [10, Section 1.7] for a precise definition) of
bξ − a is small. Our goal is to show that NS(bξ − a) is not too small.
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Let ε1, ε2, ε3 be a fundamental system of S-units in Q(ξ). By [10, Propo-
sition 4.3.12], there exist η in Q(ξ) and integers m1,m2,m3 such that

bξ − a = ηεm1
1 εm2

2 εm3
3 ,

∣∣∣h(η)− 1

2
logNS(bξ − a)

∣∣∣�α 1,

|m1|, |m2|, |m3| �α log |a|.

The last assertion follows from the proof of [10, Proposition 4.3.11] com-
bined with [10, Proposition 4.3.9 (iii)]. Since |a| ≥ |b|2, we get∣∣∣ bξ − a

bξσ − a
− 1
∣∣∣ =

∣∣∣b(ξ − ξσ)

bξσ − a

∣∣∣�α |a|−1/2.

On the other hand, we have

Λ :=
bξ − a
bξσ − a

− 1 =
η

ησ

( ε1

εσ1

)m1
( ε2

εσ2

)m2
( ε3

εσ3

)m3

− 1.

We apply Theorem 6 to Λ to derive that

log |a| �α (− log |Λ|)�α logNS(bξ − a) log
log |a|

logNS(bξ − a)
.

Consequently, there exists a positive, effectively computable real number
κ1 such that

NS(bξ − a)�α |a|κ1 .

If |b| ≥ |a|, we proceed in a similar way. If |b| < |a|2, then the desired
result follows from (7). Thus, we assume that |b| ≥ |a|2, which implies
that ∣∣∣ξσ(bξ − a)

ξ(bξσ − a)
− 1
∣∣∣ =

∣∣∣ a(ξ − ξσ)

ξ(bξσ − a)

∣∣∣�α |b|−1/2.

Note that |m1|, |m2|, |m3| are now �α log |b|. Arguing as above, we de-
rive from Theorem 6 that there exists a positive, effectively computable
κ2 such that

NS(bξ − a)�α |b|κ2 .

Consequently, we have established that there exists a positive, effectively
computable κ such that

NS(bξ − a)�α (max{|a|, |b|})κ.

This implies that

|bα− a|p �α (max{|a|, |b|})−2+κ �α |ab|−2+κ,
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and the proof of Theorem 4 is complete.

For the proof of Theorem 5, we proceed in a very similar way. We take for
S the set of places on Q(ξ) composed of the infinite places and the finite
places above the prime numbers p1, . . . , pt. We conclude that NS(bξ−a)
exceeds some positive constant times a small power of max{|a|, |b|}. This
implies Theorem 5.
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tités dont la valeur n’est ni algébrique, ni même réductible à des ir-
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