
ACTA MATHEMATICA SPALATENSIA
Vol.2 (2022) 57–68
https://doi.org/10.32817/ams.2.4

Received: 07 Apr 2021
Accepted: 23 July 2021

Positive operator frame for Hilbert

spaces
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Abstract

Motived by the characterization of the positive elements in a C∗–algebra
and the decomposition of an operator into a sum of orthogonal pro-
jections, we introduce the notions of positive operator and K-operator
frame for B(H). Also, we give some properties.
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1 Introduction

Frames for Hilbert spaces were introduced by Duffin and Schaefer [3]
in 1952 to study some deep problems in nonharmonic Fourier series by
abstracting the fundamental notion of Gabor [5] for signal processing.
In fact, in 1946 Gabor, showed that any function f ∈ L2(R) could be
reconstructed via a Gabor system {g(x−ka)e2πimbx : k,m ∈ Z} where g
is a continuous compact support function. These ideas did not generate
much interest outside of nonharmonic Fourier series and signal process-
ing until the landmark paper of Daubechies, Grossmann, and Meyer [4]
in 1986, where they developed the class of tight frames for signal recon-
struction. They showed that frames can be used to find series expansions
of functions in L2(R), which are very similar to the expansions using or-
thonormal bases. After this innovative work, the theory of frames began
to be widely studied. While orthonormal bases have been widely used
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for many applications [7], it is the redundancy that makes frames useful
in applications.

The last decades have seen tremendous activity in the development of
frame theory, and many generalizations of frames have come into exis-
tence in Hilbert Spaces and Hilbert C∗-modules [8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18].

In this paper, we introduce the notions of positive operator and K-
operator frame for B(H), and we establish her relation with g-frame,
K-g-frame, operator frame, and K-operator frame.

2 Preliminaries

Throughout the paper, H denotes a separable Hilbert space and B(H)
the algebra of all bounded linear operators on H. An operator T ∈ B(H)
is called positive if 〈Tx, x〉 ≥ 0 for all x ∈ H and the set of all positive
operators is denoted by B(H)+. Let I be a finite or countable index
subset of N.

This section recalls the definitions of g-frame, K-g-frame, operator frame,
and K-operator frame. For more on frames in Hilbert spaces, see [2].

Definition 1. [20] We call a sequence {Λi ∈ B(H, Vi) : i ∈ I} a g-frame
for the Hilbert space H with respect to {Vi : i ∈ I} if there exist positive
constants A,B > 0 such that for all x ∈ H,

A‖x‖2 ≤
∑
i∈I
‖Λix‖2 ≤ B‖x‖2.

The numbers A and B are called g-frame bounds. If A = B = λ, the
g-frame is λ-tight. If A = B = 1, it is called a Parseval g-frame. If only
the second inequality holds, we call it a g-Bessel sequence.

Definition 2. [1]Let K ∈ B(H). A sequence {Λi ∈ B(H,Ki) : i ∈ I} is
called a K-g-frame for H with respect to {Ki}i∈I , if there exist constants
A,B > 0 such that

A‖K∗x‖2 ≤
∑
i∈I
‖Λix‖2 ≤ B‖x‖2 ∀x ∈ H.

The constants A and B are called lower and upper bounds for the K-
g-frame, respectively. A K-g-frame {Λi}i∈I is said to be tight if there
exists a constant A > 0 such that

A‖K∗x‖2 =
∑
i∈I
‖Λix‖2 ∀x ∈ H. (1)

58



POSITIVE OPERATOR FRAME FOR HILBERT SPACES

It is called Parseval K-g-frame if A = 1 in (1).

Definition 3. [6] A family of bounded linear operators {Ti}i∈I on a
Hilbert space H is said to be an operator frame for B(H), if there exist
positive constants A,B > 0 such that

A‖x‖2 ≤
∑
i∈I
‖Tix‖2 ≤ B‖x‖2 ∀x ∈ H. (2)

where A and B are called lower and upper bounds for the operator frame,
respectively. An operator frame {Ti}i∈I is said to be tight if A = B. It is
called Parseval operator frame if A = B = 1. If only upper inequality of
(2) hold, then {Ti}i∈I is called an operator Bessel sequence for B(H).

Definition 4. [19] Let K ∈ B(H). A family of bounded linear operators
{Ti}i∈I on a Hilbert space H is said to be a K-operator frame for B(H),
if there exist positive constants A,B > 0 such that

A‖K∗x‖2 ≤
∑
i∈I
‖Tix‖2 ≤ B‖x‖2 ∀x ∈ H.

where A and B are called lower and upper bounds for the K-operator
frame, respectively. A K-operator frame {Ti}i∈I is said to be tight if
there exists a constantA > 0 such that

A‖K∗x‖2 =
∑
i∈I
‖Tix‖2 ∀x ∈ H. (3)

It is called Parseval K-operator frame if A = 1 in (3).

3 Positive Operator Frame

Let H be an infinite dimensional separable Hilbert Space and (ei)i∈N
be an orthonormal basis for H. Then ∀x ∈ H, x =

∑
i∈N〈x, ei〉ei =∑

i∈N ei ⊗ ei(x) so idH =
∑
i∈N ei ⊗ ei. Motivated by this, we give the

following definition.

Definition 5. A family of positive operators {Ti}i∈I on a Hilbert space
H is said to be a positive operator frame for B(H), if there exist positive
constants A,B > 0 such that

A‖x‖2 ≤
∑
i∈I
〈Tix, x〉 ≤ B‖x‖2 ∀x ∈ H. (4)

The numbers A and B are called lower and upper bounds of the positive
operator frame, respectively. If A = B, the positive operator frame is
tight. If A = B = 1, it is called a normalized tight positive operator
frame or a Parseval positive operator frame. If only upper inequality of
(4) hold, then {Ti}i∈I is called a Bessel positive operator for B(H).

59



MOHAMED ROSSAFI YOUSSEF ARIBOU

Example 1. Let H be a Hilbert Space and (fi)i∈I be a frame for H.
Then there exist positive constants A,B > 0 such that

A‖x‖2 ≤
∑
i∈I
|〈x, fi〉|2 ≤ B‖x‖2 ∀x ∈ H. (5)

Define {Ti}i∈I ⊂ B(H)+ by Ti = fi ⊗ fi for all i ∈ I. Then∑
i∈I
〈Tix, x〉 =

∑
i∈I
〈(fi ⊗ fi)x, x〉

=
∑
i∈I
〈〈x, fi〉fi, x〉 =

∑
i∈I
〈x, fi〉〈fi, x〉 =

∑
i∈I
|〈x, fi〉|2

for all x ∈ H. Then by (5), we have

A‖x‖2 ≤
∑
i∈I
〈Tix, x〉 ≤ B‖x‖2 ∀x ∈ H.

Thus {Ti}i∈I is a positive operator frame for B(H).

Theorem 1. Every positive operator frame corresponds to an operator
frame and vice versa.

Proof. Let {Ti}i∈I be an operator frame for B(H), then there exist pos-
itive constants A,B > 0 such that

A‖x‖2 ≤
∑
i∈I
‖Tix‖2 ≤ B‖x‖2 ∀x ∈ H.

Hence
A‖x‖2 ≤

∑
i∈I
〈T ∗i Tix, x〉 ≤ B‖x‖2 ∀x ∈ H.

Thus {T ∗i Ti}i∈I is a positive operator frame for B(H).

For the converse, let {T̃i}i∈I be a positive operator frame for B(H). Since
T̃i ∈ B(H)+, there exist Ti ∈ B(H) such that T̃i = T ∗i Ti. {T̃i}i∈I is a
positive operator frame for B(H), hence there exist positive constants
A,B > 0 such that

A‖x‖2 ≤
∑
i∈I
〈T̃ix, x〉 ≤ B‖x‖2 ∀x ∈ H.

It follows that

A‖x‖2 ≤
∑
i∈I
〈T ∗i Tix, x〉 ≤ B‖x‖2 ∀x ∈ H.
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Thus
A‖x‖2 ≤

∑
i∈I
‖Tix‖2 ≤ B‖x‖2 ∀x ∈ H.

Hence {Ti}i∈I is an operator frame for B(H).

Corollary 1. Every positive tight operator frame is corresponds to a
tight operator frame and vice versa.

Corollary 2. Every Bessel positive operator corresponds to an operator
Bessel sequence and vice versa.

Theorem 2. Every g-frame {Λi ∈ B(H,Hi) : i ∈ I} for H with respect
to {Hi : i ∈ I}, corresponds to a positive operator frame for B(H). The
convers is valid.

Proof. Result of the characterization for the positive elements in a C∗–
algebra.

Definition 6. Let {Ti}i∈I be a positive operator frame for B(H). We
define the frame operator S : H → H by

Sx =
∑
i∈I

Tix,

for all x ∈ H.

Theorem 3. Assume that S is the frame operator of a positive oper-
ator frame {Ti}i∈I for B(H) with bounds A and B, then S is positive,
self-adjoint and invertible. Moreover, we have AI ≤ S ≤ BI and the
reconstruction formula

x =
∑
i∈I

S−1Tix =
∑
i∈I

TiS
−1x ∀x ∈ H.

Proof. It is clear that S is positive and self-adjoint. For any x ∈ H, since
{Ti}i∈I is a positive operator frame with bounds A,B, we have

〈Ax, x〉 = A‖x‖2 ≤
∑
i∈I
〈Tix, x〉 = 〈Sx, x〉 ≤ B‖x‖2 = 〈Bx, x〉.

This shows that
AI ≤ S ≤ BI,

which implies that S is invertible. Further, for any x ∈ H, we have

x = S−1Sx = S−1
∑
i∈I

Tix =
∑
i∈I

S−1
T Tix,
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and
x = SS−1x =

∑
i∈I

TiS
−1x.

Theorem 4. Let H and K be two Hilbert spaces. Let {Λi}i∈I , {Γj}j∈J
be two positive operator frames for B(H) and B(K) with frame operator
SΛ and SΓ with bounds (A,B) and (C,D) respectively. Then {Λi ⊗
Γj}i∈I,j∈J is a positive operator frame for B(H⊗K) with frame operator
SΛ ⊗ SΓ and lower and upper bounds AC and BD, respectively.

Proof. By the definition of the positive operator frame {Λi}i∈I and
{Γj}j∈J we have

A‖x‖2 ≤
∑
i∈I
〈Λix, x〉 ≤ B‖x‖2 ∀x ∈ H,

C‖y‖2 ≤
∑
j∈J
〈Γjy, y〉 ≤ D‖y‖2 ∀y ∈ K.

Therefore,

AC‖x‖2‖y‖2 ≤
∑
i∈I
〈Λix, x〉 ⊗

∑
j∈J
〈Γjy, y〉 ≤ BD‖x‖2‖y‖2

∀x ∈ H, ∀y ∈ K. Then

AC‖x⊗ y‖2 ≤
∑
i∈I
j∈J

〈Λix, x〉 ⊗ 〈Γjy, y〉 ≤ BD‖x⊗ y‖2

∀x ∈ H, ∀y ∈ K. Consequently we have

AC‖x⊗ y‖2 ≤
∑
i∈I
j∈J

〈Λix⊗ Γjy, x⊗ y〉 ≤ BD‖x⊗ y‖2

∀x ∈ H, ∀y ∈ K. Then ∀x⊗ y ∈ H ⊗K we have

AC‖x⊗ y‖2 ≤
∑
i∈I
j∈J

〈(Λi ⊗ Γj)(x⊗ y), x⊗ y〉 ≤ BD‖x⊗ y‖2.

The last inequality is satisfied for every finite sum of elements inH⊗algK
and then it is satisfied for all z ∈ H ⊗K. It shows that {Λi⊗Γj}i∈I,j∈J
is a positive operator frame for B(H⊗K) with lower and upper bounds
AC and BD, respectively.
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By the definition of frame operator SΛ and SΓ we have:

SΛx =
∑
i∈I

Λix ∀x ∈ H, SΓy =
∑
j∈J

Γjy ∀y ∈ K.

Therefore,

(SΛ ⊗ SΓ)(x⊗ y) = SΛx⊗ SΓy =
∑
i∈I

Λix⊗
∑
j∈J

Γjy

=
∑
i∈I
j∈J

Λix⊗ Γjy =
∑
i∈I
j∈J

(Λi ⊗ Γj)(x⊗ y).

Now by the uniqueness of frame operator, the last expression is equal to
SΛ⊗Γ(x ⊗ y). Consequently we have (SΛ ⊗ SΓ)(x ⊗ y) = SΛ⊗Γ(x ⊗ y).
The last equality is satisfied for every finite sum of elements in H⊗algK
and then it is satisfied for all z ∈ H ⊗K. It shows that (SΛ ⊗ SΓ)(z) =
SΛ⊗Γ(z). So SΛ⊗Γ = SΛ ⊗ SΓ.

4 Positive K-operator frame

Definition 7. Let K ∈ B(H)+. A family of positive operators {Ti}i∈I
on a Hilbert space H is said to be a K-positive operator frame for B(H),
if there exist positive constants A,B > 0 such that

A〈Kx, x〉 ≤
∑
i∈I
〈Tix, x〉 ≤ B‖x‖2 ∀x ∈ H.

The numbers A and B are called lower and upper bounds of the K-
positive operator frame, respectively. If A = B, the positive K-operator
frame is tight. If A = B = 1, it is called a normalized tight K-positive
operator frame or a Parseval K-positive operator frame.

Example 2. Let H be a Hilbert Space and (fi)i∈I be a K-frame for H.
Then there exist positive constants A,B > 0 such that

A‖K∗x‖2 ≤
∑
i∈I
|〈x, fi〉|2 ≤ B‖x‖2 ∀x ∈ H. (6)

Define {Ti}i∈I ⊂ B(H)+ by Ti = fi ⊗ fi for all i ∈ I. Then∑
i∈I
〈Tix, x〉 =

∑
i∈I
〈(fi ⊗ fi)x, x〉

=
∑
i∈I
〈〈x, fi〉fi, x〉 =

∑
i∈I
〈x, fi〉〈fi, x〉 =

∑
i∈I
|〈x, fi〉|2,
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for all x ∈ H. Then by (6) we have

A〈KK∗x, x〉 = A‖K∗x‖2 ≤
∑
i∈I
〈Tix, x〉 ≤ B‖x‖2 ∀x ∈ H.

Thus {Ti}i∈I is a KK∗-positive operator frame for B(H).

Theorem 5. Every K-positive operator frame corresponds to a K-operator
frame and vice versa.

Proof. Let {Ti}i∈I be a K-operator frame for B(H), then there exist
positive constants A,B > 0 such that

A‖K∗x‖2 ≤
∑
i∈I
‖Tix‖2 ≤ B‖x‖2 ∀x ∈ H.

Hence
A〈K∗Kx, x〉 ≤

∑
i∈I
〈T ∗i Tix, x〉 ≤ B‖x‖2 ∀x ∈ H.

Thus {T ∗i Ti}i∈I is a K∗K-positive operator frame for B(H).

For the convese, let {T̃i}i∈I be a K̃-positive operator frame for B(H).
T̃i ∈ B(H)+ then there exist Ti ∈ B(H) such that T̃i = T ∗i Ti. {T̃i}i∈I is
a K̃-positive operator frame for B(H), then there exist positive constants
A,B > 0 such that

A〈K̃x, x〉 ≤
∑
i∈I
〈T̃ix, x〉 ≤ B‖x‖2 ∀x ∈ H.

Hence,

A〈KK∗x, x〉 ≤
∑
i∈I
〈T ∗i Tix, x〉 ≤ B‖x‖2 ∀x ∈ H,

thus
A‖K∗x‖2 ≤

∑
i∈I
‖Tix‖2 ≤ B‖x‖2 ∀x ∈ H.

Therefore, {Ti}i∈I is a K-operator frame for B(H).

Corollary 3. Every positive tight K-operator frame corresponds to a
tight K-operator frame and vice versa.

Theorem 6. Every K-g-frame {Λi ∈ B(H,Hi) : i ∈ I} for H with
respect to {Hi : i ∈ I}, corresponds to a K-positive operator frame for
B(H). The converse is also valid.

Proof. Result of the characterization for the positive elements in a C∗-
algebra.
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Definition 8. Let K ∈ B(H)+ and {Ti}i∈I be a K-positive operator
frame for B(H). We define the frame operator S : H → H by

Sx =
∑
i∈I

Tix,

for all x ∈ H.

Theorem 7. Assume that S is the frame operator of a K-positive op-
erator frame {Ti}i∈I for B(H) with bounds A and B, then S is positive
and self-adjoint. Moreover, we have AK ≤ S ≤ BI

Proof. It is clear that S is positive and self-adjoint. For any x ∈ H, since
{Ti}i∈I is a K-positive operator frame with bounds A,B, we have

〈AKx, x〉 = A〈Kx, x〉 ≤
∑
i∈I
〈Tix, x〉 = 〈Sx, x〉 ≤ B‖x‖2 = 〈Bx, x〉.

This shows that
AK ≤ S ≤ BI,

Theorem 8. Let H and K be two Hilbert spaces. Let {Λi}i∈I , {Γj}j∈J
be K-positive operator frame for B(H) and L-positive operator frame
for B(K) with frame operator SΛ and SΓ with bounds (A,B) and (C,D)
respectively. Then {Λi ⊗ Γj}i∈I,j∈J is a K ⊗ L-positive operator frame
for B(H⊗K) with frame operator SΛ ⊗ SΓ and lower and upper bounds
AC and BD, respectively.

Proof. By the definition of {Λi}i∈I and {Γj}j∈J we have:

A〈Kx, x〉 ≤
∑
i∈I
〈Λix, x〉 ≤ B‖x‖2 ∀x ∈ H.

C〈Ly, y〉 ≤
∑
j∈J
〈Γjy, y〉 ≤ D‖y‖2 ∀y ∈ K.

Therefore

AC〈Kx, x〉〈Ly, y〉 ≤
∑
i∈I
〈Λix, x〉 ⊗

∑
j∈J
〈Γjy, y〉

≤ BD‖x‖2‖y‖2 ∀x ∈ H, ∀y ∈ K.

Then

AC〈Kx⊗ Ly, x⊗ y〉 ≤
∑

i∈I,j∈J
〈Λix, x〉 ⊗ 〈Γjy, y〉

≤ BD‖x⊗ y‖2 ∀x ∈ H, ∀y ∈ K.
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Consequently, we have

AC〈(K ⊗ L)(x⊗ y), x⊗ y〉 ≤
∑

i∈I,j∈J
〈Λix⊗ Γjy, x⊗ y〉

≤ BD‖x⊗ y‖2 ∀x ∈ H, ∀y ∈ K.

Then, for all x⊗ y ∈ H ⊗K we have

AC〈(K ⊗ L)(x⊗ y), x⊗ y〉 ≤
∑

i∈I,j∈J
〈(Λi ⊗ Γj)(x⊗ y), x⊗ y〉

≤ BD‖x⊗ y‖2.

The last inequality is satisfied for every finite sum of elements inH⊗algK
and then it’s satisfied for all z ∈ H ⊗K. It shows that {Λi ⊗ Γj}i∈I,j∈J
is a K ⊗ L-positive operator frame for B(H⊗K) with lower and upper
bounds AC and BD, respectively.

By the definition of frame operator SΛ and SΓ we have

SΛx =
∑
i∈I

Λix ∀x ∈ H, SΓy =
∑
j∈J

Γjy ∀y ∈ K.

Therefore,

(SΛ ⊗ SΓ)(x⊗ y) = SΛx⊗ SΓy =
∑
i∈I

Λix⊗
∑
j∈J

Γjy

=
∑
i∈I
j∈J

Λix⊗ Γjy =
∑
i∈I
j∈J

(Λi ⊗ Γj)(x⊗ y).

Now, by uniqueness of frame operator, the last expression is equal to
SΛ⊗Γ(x ⊗ y). Consequently, we have (SΛ ⊗ SΓ)(x ⊗ y) = SΛ⊗Γ(x ⊗ y).
The last equality is satisfied for every finite sum of elements in H⊗algK
and then it is satisfied for all z ∈ H ⊗K. It shows that (SΛ ⊗ SΓ)(z) =
SΛ⊗Γ(z). So SΛ⊗Γ = SΛ ⊗ SΓ.
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