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Nonelementary irreducible

representations of Spin(n, 1)

Domagoj Kovačević, Hrvoje Kraljević

Abstract

We study corners and fundamental corners of the irreducible subquo-
tients of reducible elementary representations of the groupsG = Spin(n, 1).
For even n we obtain results in a way analogous to the results in [8] for
the groups SU(n, 1). Especially, we again get a bijection between the
nonelementary part Ĝ0 of the unitary dual Ĝ and the unitary dual K̂.
In the case of odd n we get a bijection between Ĝ0 and a true subset of
K̂.
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1 Introduction

1.1 Elementary representations

Let G be a connected semisimple Lie group with finite center, g0 its Lie
algebra, K its maximal compact subgroup, and g0 = k0 ⊕ p0 the corre-
sponding Cartan decomposition of g0. Let a0 be a Cartan subspace of
p0, A the corresponding vector subgroup of G and M (resp. m0) the
centralizer of A in K (resp. of a0 in k0). Let P = MAN be the minimal
parabolic subgroup of G corresponding to a choice of positive restricted
roots of the pair (g0, a0). For any compact group L its unitary dual will
be denoted by L̂. Furthermore, we denote by l the complexification of a
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real vector space l0. For σ ∈ M̂ and ν ∈ a∗ let πσ,ν be the correspond-
ing elementary representation of G − the representation parabolically
induced by the representation σ ⊗ ν of P.

From classical results of Harish−Chandra we know that all elementary
representations are admissible and of finite length and that every com-
pletely irreducible admissible representation of G on a Banach space is
infinitesimally equivalent to an irreducible subquotient of an elemen-
tary representation. Infinitesimal equivalence of completely irreducible
admissible representations is equivalent to algebraic equivalence of the
corresponding (g,K)−modules. We will denote by ÙG the set of all in-
finitesimal equivalence classes of completely irreducible admissible rep-
resentations of G on Banach spaces. ÙGe will denote the set of infinites-
imal equivalence classes of irreducible elementary representations andÙG0 = ÙG \ ÙGe the set of infinitesimal equivalence classes of irreducible
suquotients of reducible elementary representations. It is also due to
Harish−Chandra that every irreducible unitary representation is admis-
sible and that infinitesimal equivalence between such representations is
equivalent to their unitary equivalence. Thus the unitary dual Ĝ of
G can be regarded as a subset of ÙG. We denote Ĝe = Ĝ ∩ ÙGe and
Ĝ0 = Ĝ ∩ ÙG0 = Ĝ \ Ĝe.

1.2 Infinitesimal characters

We denote by U(g) the universal enveloping algebra of g and by Z(g) its

center. We denote by Ẑ(g) the set of all infinitesimal characters (unital
homomorphisms Z(g) −→ C) of g. Let h be a Cartan subalgebra of g,
∆ = ∆(g, h) ⊆ h∗ the root system of the pair (g, h) and W = W (g, h)
its Weyl group. Denote by P(h∗) the polynomial algebra over h∗ and
by ω = ωh the Harish−Chandra isomorphism of Z(g) onto the algebra

P(h∗)W of W−invariant polynomials on h∗. For λ ∈ h∗ define χλ ∈ Ẑ(g)
by χλ(z) = (ω(z))(λ), z ∈ Z(g). Then λ 7→ χλ is a surjection of h∗ onto

Ẑ(g) and for λ, µ ∈ h∗ one has χλ = χµ if and only if µ = wλ for some
w ∈W.

It is well known that every elementary representation πσ,λ has infinitesi-
mal character. To describe it chose a Cartan subalgebra d0 of m0 and let
∆+

m be a choice of positive roots of the pair (m, d). Set δm = 1
2

∑
α∈∆+

m
α.

Denote by λσ ∈ d∗ the highest weight of the representation σ with re-
spect to ∆+

m. Now, h0 = d0 u a0 is a Cartan subalgebra of g0 and the
infinitesimal character of the elementary representation πσ,ν is χΛ(σ,ν),
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where Λ(σ, ν) ∈ h∗ is given by

Λ(σ, ν)|d = λσ + δm and Λ(σ, ν)|a = ν.

1.3 Corners and fundamental corners

Suppose now that the rank of g is equal to the rank of k. Choose a
Cartan subalgebra t0 of k0. Let ∆K = ∆(k, t) ⊆ ∆ = ∆(g, t) be the root
systems of the pairs (k, t) and (g, t) and WK = W (k, t) ⊆ W = W (g, t)
the corresponding Weyl groups. Choose positive roots ∆+

K in ∆K and
let C be the corresponding WK−Weyl chamber in t∗R = it∗0. Denote by
D the set of all W−Weyl chambers in it∗0 contained in C. For D ∈ D we
denote by ∆D the corresponding positive roots in ∆ and let ∆D

P denotes
the noncompact roots in ∆D, i.e. ∆D

P = ∆D \∆+
K . Set

ρK =
1

2

∑
α∈∆+

K

α and ρDP =
1

2

∑
α∈∆D

P

α.

Recall some definitions from [8]. For a representation π of G and for q ∈
K̂ we denote by (π : q) the multiplicity of q in π|K. The K−spectrum
Γ(π) of a representation π of G is defined by

Γ(π) = {q ∈ K̂; (π : q) > 0}.

We identify q ∈ K̂ with its maximal weight in it∗0 with respect to ∆+
K .

For q ∈ Γ(π) and for D ∈ D we say:

(i) q is a D−corner for π if q − α 6∈ Γ(π) ∀α ∈ ∆D
P ;

(ii) q is a D−fundamental corner for π if it is a D−corner for π and
χq+ρK−ρDP is the infinitesimal character of π;

(iii) q is a fundamental corner for π if it is a D−fundamental corner
for π for some D ∈ D.

In [8] for the case of the groups G = SU(n, 1) and K = U(n) the
following results were proved:

1. Every π ∈ ÙG0 has either one or two fundamental corners.

2. Ĝ0 = {π ∈ ÙG0; π has exactly one fundamental corner}.

3. For π ∈ Ĝ0 denote by q(π) the unique fundamental corner of π.
Then π 7→ q(π) is a bijection of Ĝ0 onto K̂.

In this paper we investigate the analogous notions for the groups Spin(n, 1).
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2 The groups Spin(n, 1)

In the rest of the paper G = Spin(n, 1), n ≥ 3, is the connected and
simply connected real Lie group with simple real Lie algebra

g0 = so(n, 1) =
{
A ∈ gl(n+ 1,R); At = −ΓAΓ

}
, Γ =

ï
In 0
0 −1

ò
,

i.e.

g0 =

ßï
B a
at 0

ò
; B ∈ so(n), a ∈Mn,1(R)

™
.

Here and in the rest of the paper we use the usual notation:

• Mm,n(K) is the vector space of m× n matrices over a field K.

• gl(n,K) denotes the Lie algebra Mn,n(K) with [A,B] = AB−BA.

• GL(n,K) is the group of invertible matrices in Mn,n(K).

• At is the transpose of a matrix A.

• so(n,K) = {B ∈ gl(n,K); Bt = −B}.

• so(n) = so(n,R).

• SO(n) = {A ∈ GL(n,R); A−1 = At, det A = 1}.

We choose Cartan decomposition g0 = k0 ⊕ p0 :

k0 =

ßï
B 0
0 0

ò
; B ∈ so(n)

™
, p0 =

ßï
0 a
at 0

ò
; a ∈Mn,1(R)

™
.

The group Spin(n, 1) is double cover of the identity component SO(n, 1)0

of the Lie group SO(n, 1) = {A ∈ GL(n+ 1,R); A−1 = ΓAtΓ, det A =
1}. The maximal compact subgroup K ⊂ G with Lie algebra k0 is the
double cover Spin(n) of the group SO(n).

Now we choose Cartan subalgebras. Ep,q will denote the (n+1)×(n+1)
matrix with (p, q)−entry equal 1 and all the other entries 0. Set

Ip,q = Ep,q − Eq,p, 1 ≤ p, q ≤ n, p 6= q;

Bp = Ep,n+1 + En+1,p, 1 ≤ p ≤ n.

Then {Ip,q; 1 ≤ q < p ≤ n} is a basis of k0, {Bp; 1 ≤ p ≤ n} is a basis
of p0 and t0 = spanR

{
I2p,2p−1; 1 ≤ p ≤ n

2

}
is a Cartan subalgebra of k0.

We consider separately two cases: n even and n odd.

32



NONELEMENTARY IRREDUCIBLE REPRESENTATIONS OF SPIN(N, 1)

n even, n = 2k

In this case t0 is also a Cartan subalgebra of g0. Set

Hp = −iI2p,2p−1, 1 ≤ p ≤ k.

Dual space t∗ identifies with Ck through this basis of t :

t∗ 3 λ = (λ(H1), . . . , λ(Hk)) ∈ Ck.

Denoting by {α1, . . . , αk} the canonical basis of Ck = t∗ the root system
of the pair (g, t) is

∆ = ∆(g, t) = {±αp ± αq; 1 ≤ p, q ≤ k, p 6= q} ∪ {±αp; 1 ≤ p ≤ k}.

The Weyl group W of ∆ consists of all permutations of the coordinates
combined with multiplications of some coordinates with −1.

The root system ∆K of the pair (k, t) is {±αp ± αq; p 6= q}. We choose

positive roots ∆+
K = {αp ± αq; 1 ≤ p < q ≤ k}. The unitary dual K̂ of

K = Spin(2k) will be parametrized by identifying with the corresponding
highest weights. Thus

K̂ =
¶

(m1, . . . ,mk) ∈ Zk ∪
(

1
2 + Z

)k
; m1 ≥ m2 ≥ · · · ≥ mk−1 ≥ |mk|

©
.

n odd, n = 2k + 1

Now t0 is not a Cartan subalgebra of g0. Set

H = Bn = B2k+1 = E2k+1,2k+2 +E2k+2,2k+1, a0 = RH, h0 = t0ua0.

Then h0 is a Cartan subalgebra of g0 and all the other Cartan subalgebras
of g0 are Int(g0)−conjugated with h0. The ordered basis (H1, . . . ,Hk, H)
of h is used for the identification of h∗ = Ck+1 :

h∗ 3 λ = (λ(H1), . . . , λ(Hk), λ(H)) ∈ Ck+1.

t∗ and a∗ are identified with subspaces of h∗ : t∗ = {λ ∈ h∗; λ|a = 0}
and a∗ = {λ ∈ h∗; λ|t = 0}. So h∗ = t∗ u a∗.

Let {α1, . . . , αk+1} be the canonical basis of Ck+1. The root system of the
pair (g, h) is ∆ = ∆(g, h) = {±αp ± αq; 1 ≤ p, q ≤ k + 1, p 6= q}. The
Weyl group W = W (g, h) consists of all permutations of coordinates
combined with multiplying even number of coordinates with −1. The
root system of the pair (k, t) is ∆K = ∆(k, t) = {±αp ± αq; 1 ≤ p, q ≤
k, p 6= q} ∪ {±αp; 1 ≤ p ≤ k}. Choose positive roots ∆+

K = {αp ±
αq; 1 ≤ p < q ≤ k} ∪ {αp; 1 ≤ p ≤ k}. The dual K̂ is again identified
with the highest weights:

K̂ =
¶
q = (m1, . . . ,mk) ∈ Zk+ ∪

(
1
2 + Z+

)k
; m1 ≥ m2 ≥ · · · ≥ mk

©
.
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Elementary representations of the groups Spin(n, 1)

Regardless the parity of n we put H = Bn = En,n+1 +En+1,n, a0 = RH.
As we already said, if n is odd, n = 2k + 1, then h0 = t0 u a0 is
a Cartan subalgebra of g0 and all the other Cartan subalgebras are
Int(g0)−conjugated to h0. If n = 2k g0 has two Int(g0)−conjugacy
classes of Cartan subalgebras. Their representatives are t0 and h0 =
spanR{iH1, . . . , iHk−1, H}. t and h are of course Int(g)−conjugated. Ex-
plicitly, the matrix

A =


1√
2
Pk

1√
2
Pk −iek

− 1√
2
Qk

1√
2
Ik 0k

− i√
2
etk

i√
2
etk 0

 ∈ SO(2k, 1,C),

where Pk = Ik − Ek,k = diag(1, . . . , 1, 0),

Qk = Ik − 2Ek,k = diag(1, . . . , 1,−1),

ek ∈ Mk,1(C) is given by etk = [0 · · · 0 1] and 0k is the zero matrix
in Mk,1(C), has the properties AHjA

−1 = Hj , 1 ≤ j ≤ k − 1, and
AHkA

−1 = H; thus, AtA−1 = h and the parameters from Ck = h∗ = t∗

of the infinitesimal characters obtained through the two Harish−Chandra
isomorphisms Z(g) −→ P(h∗)W and Z(g) −→ P(t∗)W coincide if the
identifications of h∗ and t∗ with Ck are done through the two ordered
bases (H1, . . . ,Hk−1, H) of h and (H1, . . . ,Hk−1, Hk) of t.

For both cases, n even and n odd, m0 is the subalgebra of all matrices in
g0 with the last two rows and columns 0. The subgroup M is isomorphic
to Spin(n− 1). A Cartan subalgebra of m0 is

d0 = t0 ∩m0 = spanR{iH1, . . . , iHk−1}, k =
⌊n

2

⌋
.

The elements of M̂ are identified with their highest weights. For n even,
n = 2k, we have

M̂ =
¶

(n1, . . . , nk−1) ∈ Zk−1
+ ∪

(
1
2 + Z+

)k−1
; n1 ≥ n2 ≥ · · · ≥ nk−1 ≥ 0

©
and for n odd, n = 2k + 1, we have

M̂ =
¶

(n1, . . . , nk) ∈ Zk ∪
(

1
2 + Z

)k
; n1 ≥ n2 ≥ · · · ≥ nk−1 ≥ |nk|

©
.

The branching rules for the restriction of representations of K to the
subgroup M are the following:
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If n is even, n = 2k, we have

(m1, . . . ,mk)|M =
⊕

(n1,...,nk−1)≺(m1,...,mk)

(n1, . . . , nk−1);

here the symbol (n1, . . . , nk−1) ≺ (m1, . . . ,mk) means that all mi and
nj are either in Z or in 1

2 + Z and that

m1 ≥ n1 ≥ m2 ≥ n2 · · · ≥ mk−1 ≥ nk−1 ≥ |mk|.

If n is odd, n = 2k + 1, we have

(m1, . . . ,mk)|M =
⊕

(n1,...,nk)≺(m1,...,mk)

(n1, . . . , nk);

now the symbol (n1, . . . , nk) ≺ (m1, . . . ,mk) means that all mi and nj
are either in Z or in 1

2 + Z and that

m1 ≥ n1 ≥ m2 ≥ n2 · · · ≥ mk−1 ≥ nk−1 ≥ mk ≥ |nk|.

The restriction πσ,ν |K is the representation of K induced by the rep-
resentation σ of the subgroup M, thus it does not depend on ν. By
Frobenius Reciprocity Theorem the multiplicity of q ∈ K̂ in πσ,ν |K is
equal to the multiplicity of σ in q|M . Thus

πσ,ν |K =
⊕
q∈K̂
σ≺q

q.

Hence, the multiplicity of every q = (m1, . . . ,mk) ∈ K̂ in the elementary
representation πσ,ν is either 1 or 0 and the K−spectrum Γ(πσ,ν) consists
of all q = (m1, . . . ,mk) ∈ K̂ ∩ (n1 + Z)k such that

m1 ≥ n1 ≥ m2 ≥ n2 ≥ · · · ≥ mk−1 ≥ nk−1 ≥
ß
|mk| if n = 2k,
mk ≥ |nk| if n = 2k + 1.

3 Representations of Spin(2k, 1)

In this section we first write down in our notation the known results on el-
ementary representations and its irreducible subquotients for the groups
Spin(2k, 1) (see [1], [2], [3], [4], [5], [6], [9], [10]). For σ = (n1, . . . , nk−1)
in M̂ ⊆ Rk−1 = id∗0 and for ν ∈ C = a∗ the elementary representation
πσ,ν is irreducible if and only if either ν 6∈ 1

2 + n1 + Z or

ν ∈
{
±
(
nk−1 + 1

2

)
,±
(
nk−2 + 3

2

)
, . . . ,±

(
n2 + k − 5

2

)
,±
(
n1 + k − 3

2

)}
.
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If πσ,ν is reducible it has either two or three irreducible subquotients.
If it has two, we will denote them by τσ,ν and ωσ,ν ; an exception is the
case of nonintegral nj and ν = 0, when we denote them by ωσ,0,±. If
πσ,ν has three irreducible subquotients, we will denote them by τσ,ν and
ωσ,ν,±. Their K−spectra are as follows:

(a1) nj ∈ Z+ and ν ∈
{
± 1

2 ,±
3
2 , . . . ,±

(
nk−1 − 1

2

)}
(this is possible

only if nk−1 ≥ 1) :

Γ(τσ,ν) : m1 ≥ n1 ≥ · · · ≥ mk−1 ≥ nk−1, |mk| ≤ |ν| − 1
2 ;

Γ(ωσ,ν,±) : m1 ≥ n1 ≥ · · · ≥ mk−1 ≥ nk−1 ≥ ±mk ≥ |ν|+ 1
2 .

(a2) nj ∈
(

1
2 + Z+

)
and ν ∈

{
±1, . . . ,±

(
nk−1 − 1

2

)}
(this is possible

only if nk−1 ≥ 3
2 ) :

Γ(τσ,ν) : m1 ≥ n1 ≥ · · · ≥ mk−1 ≥ nk−1, |mk| ≤ |ν| − 1
2 ;

Γ(ωσ,ν,±) : m1 ≥ n1 ≥ · · · ≥ mk−1 ≥ nk−1 ≥ ±mk ≥ |ν|+ 1
2 .

(a3) nj ∈
(

1
2 + Z+

)
and ν = 0 :

Γ(ωσ,0,±) : m1 ≥ n1 ≥ · · · ≥ mk−1 ≥ nk−1 ≥ ±mk ≥ 1
2 .

(b) If nj−1 > nj for some j ∈ {2, . . . , k − 1} and if

ν ∈
{
±
(
nj + k − j + 1

2

)
,±
(
nj + k − j + 3

2

)
, . . . ,

±
(
nj−1 + k − j − 1

2

)}
,

then:

Γ(τσ,ν) : m1 ≥ n1 ≥ · · · ≥ mj−1 ≥ nj−1,

|ν| − k + j − 1
2 ≥ mj ≥ nj ≥ · · · ≥ nk−1 ≥ |mk|;

Γ(ωσ,ν) : m1 ≥ n1 ≥ · · · ≥ nj−1 ≥ mj ≥ |ν| − k + j + 1
2 ,

nj ≥ mj+1 ≥ · · · ≥ nk−1 ≥ |mk|.

(c) ν ∈
{
±
(
n1 + k − 1

2

)
,±
(
n1 + k + 1

2

)
,±
(
n1 + k + 3

2

)
, . . .

}
:

Γ(τσ,ν) : |ν| − k + 1
2 ≥ m1 ≥ n1 ≥ · · · ≥ mk−1 ≥ nk−1 ≥ |mk|;

Γ(ωσ,ν) : m1 ≥ |ν| − k + 3
2 , n1 ≥ m2 ≥ · · ·

· · · ≥ mk−1 ≥ nk−1 ≥ |mk|.
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Irreducible elementary representation πσ,ν is unitary if and only if either
ν ∈ iR (so called unitary principal series) or ν ∈ 〈−ν(σ), ν(σ)〉, where

ν(σ) = min {ν ≥ 0; πσ,ν is reducible}

(so caled complementary series). Notice that for nonintegral nj ’s π
σ,0

is reducible, thus ν(σ) = 0 and the complementary series is empty. In
the case of integral nj ’s we have the following possibilities:

(a) If nk−1 ≥ 1, then ν(σ) = 1
2 . The reducible elementary representa-

tion πσ,
1
2 is of the type (a1).

(b) If nk−1 = 0 and n1 ≥ 1, let j ∈ {2, . . . , k − 1} be such that
nk−1 = · · · = nj = 0 < nj−1. Then ν(σ) = k−j+ 1

2 . The reducible

elementary representation πσ,k−j+
1
2 is of the type (bj).

(c) If σ is trivial, i.e. n1 = · · · = nk−1 = 0, then ν(σ) = k − 1
2 . The

reducible elementary representation πσ,k−
1
2 is of the type (c).

Among irreducible subquotients of reducible elementary representations
the unitary ones are ωσ,ν,±, τσ,ν(σ) and ωσ,ν(σ).

The infinitesimal character of πσ,ν (and of its irreducible subquotients)
is χΛ(σ,ν), where Λ(σ, ν) ∈ h∗ is given by

Λ(σ, ν) =
(
n1 + k − 3

2 , n2 + k − 5
2 , . . . , nk−1 + 1

2 , ν
)
.

As we pointed out, if t∗ is identified with Ck through the basis (H1, . . . ,Hk)
of t, the same parameters determine this infinitesimal character with re-
spect to the Harish−Chandra isomorphism Z(g) −→ P(t∗)W (g,t).

The WK−chamber in Rk = it∗0 corresponding to chosen positive roots
∆+
K is

C = {λ ∈ Rk; λ1 > λ2 > . . . > λk−1 > |λk| > 0}.

The set D of W−chambers contained in C consists of two elements:

D± = {λ ∈ Rk; λ1 > λ2 > · · · > λk−1 > ±λk > 0}.

The closure D+ is fundamental domain for the action of W on Rk, i.e.
each W−orbit in Rk intersects with D+ in one point. We saw that the
reducibility criteria imply that Λ(σ, ν) ∈ Rk whenever πσ,ν is reducible.
We denote by λ(σ, ν) the unique point in the intersection of WΛ(σ, ν)
with D+. In the following theorem (proved with all details in [7]) we can
suppose without loss of generality that ν ≥ 0, since πσ,ν and πσ,−ν have
the same irreducible subquotients.
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Theorem 1. (i) πσ,ν is reducible if and only if its infinitesimal character
is χλ for some λ ∈ Λ, where

Λ =
¶
λ ∈ Zk+ ∪

(
1
2 + Z+

)k
; λ1 > λ2 > · · · > λk−1 > λk ≥ 0

©
.

We write Λ as the disjoint union Λ∗ ∪ Λ0, where

Λ∗ =
¶
λ ∈ Zk+ ∪

(
1
2 + Z+

)k
; λ1 > λ2 > · · · > λk−1 > λk > 0

©
,

Λ0 =
{
λ ∈ Zk+; λ1 > λ2 > · · · > λk−1 > 0, λk = 0

}
.

(ii) For λ ∈ Λ∗ there exist k ordered pairs (σ, ν), σ ∈ M̂, ν ≥ 0, such
that χλ is the infinitesimal character of πσ,ν . These ordered pairs are
(σj , νj), 1 ≤ j ≤ k, where νj = λj and:

σ1 =
(
λ2 − k + 3

2 , . . . , λs+1 − k + s+ 1
2 , . . . , λk −

1
2

)
,

σj =
(
λ1 − k + 3

2 , . . . , λj−1 − k + j − 1
2 , λj+1 − k + j + 1

2 , . . . , λk −
1
2

)
,

2 ≤ j ≤ k − 1,

σk =
(
λ1 − k + 3

2 , λ2 − k + 5
2 , . . . , λk−1 − 1

2

)
.

(iii) For λ ∈ Λ0, the ordered pair (σ, ν), σ ∈ M̂, ν ∈ R, such that χλ is
the infinitesimal character of πσ,ν , is unique:

σ =
(
λ1 − k + 3

2 , λ2 − k + 5
2 , . . . , λk−1 − 1

2

)
, ν = 0.

Fix now λ ∈ Λ∗. There are altogether k + 2 mutually infinitesimally
inequivalent irreducible subquotients of the reducible elementary rep-
resentations πσ1,ν1 , . . . , πσk,λk which we denote by τλ1 , . . . , τ

λ
k , ω

λ
+, ω

λ
− :

τλj = τσj ,νj , ωλ± = ωσk,νk,±. Note that ωσj ,νj ∼= τλj+1 for 1 ≤ j ≤ k − 1.

The K−spectra of these irreducible representations consist of all

q = (m1, . . . ,mk) in K̂ ∩
(
λ1 + 1

2 + Z
)k

that satisfy:

Γ(τλ1 ) : λ1 − k + 1
2 ≥ m1 ≥ λ2 − k + 3

2 ≥ · · · ≥ mk−1 ≥ λk − 1
2 ≥ |mk|,

...
Γ(τλj ) : m1 ≥ λ1 − k + 3

2 ≥ m2 ≥ · · · ≥ mj−1 ≥ λj−1 − k + j − 1
2 ,

λj − k + j − 1
2 ≥ mj ≥ · · · ≥ mk−1 ≥ λk − 1

2 ≥ |mk|,
...

Γ(τλk ) : m1 ≥ λ1 − k + 3
2 ≥ m2 ≥ λ2 − k + 5

2 ≥ · · ·mk−1 ≥ λk−1 − 1
2 ,

λk − 1
2 ≥ |mk|,

Γ(ωλ±) : m1 ≥ λ1 − k + 3
2 ≥ · · · ≥ mk−1 ≥ λk−1 − 1

2 ≥ ±mk ≥ λk + 1
2 .
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It is obvious that each of these representations π has one D+−corner
and one D−−corner; we denote them by q±(π). The list is:

q±(τλ1 ) =
(
λ2 − k + 3

2 , . . . , λk−1 − 3
2 , λk −

1
2 ,∓(λk − 1

2 )
)
,

q±(τλj ) =
(
λ1 − k + 3

2 , . . . , λj−1 − k + j − 1
2 ,

λj+1 − k + j + 1
2 , . . . , λk −

1
2 ,∓(λk − 1

2 )
)
,

q±(τλk ) =
(
λ1 − k + 3

2 , λ2 − k + 5
2 , . . . , λk−1 − 1

2 ,∓(λk − 1
2 )
)
,

q±(ωλ±) =
(
λ1 − k + 3

2 , λ2 − k + 5
2 , . . . , λk−1 − 1

2 ,±(λk + 1
2 )
)
,

q±(ωλ∓) =
(
λ1 − k + 3

2 , λ2 − k + 5
2 , . . . , λk−1 − 1

2 ,∓(λk−1 − 1
2 )
)
.

We check directly that among them the fundamental ones are q±(τλk )
and q±(ωλ±) while the others q±(τλj ), j < k, q±(ωλ∓), are not fundamen-
tal.

Notice that finite dimensional τλ1 is not unitary and q+(τλ1 ) 6= q−(τλ1 )
unless it is the trivial 1−dimensional representation
(λ =

(
k − 1

2 , k −
3
2 , . . . ,

1
2

)
) when q+(τλ1 ) = q−(τλ1 ) = (0, . . . , 0). Next,

τλj for 2 ≤ j ≤ k is not unitary and q+(τλj ) 6= q−(tλj ). Finally, ωλ+ and

ωλ− are unitary (these are the discrete series representations) and each
of them has one fundamental corner, q+(ωλ+) and q−(ωλ−); the other two
q−(ωλ+) and q+(ωλ−) are not fundamental.

We consider now the case λ ∈ Λ0. The elementary representation πσ,0 is
unitary and it is direct sum of two unitary irreducible representations ωλ+

and ωλ−. Their K−spectra consist of all q = (m1, . . . ,mk) ∈ K̂∩
(

1
2 + Z

)k
that satisfy

Γ(ωλ±) : m1 ≥ λ1 − k + 3
2 ≥ · · · ≥ mk−1 ≥ λk−1 − 1

2 ≥ ±mk ≥ 1
2 .

Again each of these representations have one D+−corner and one
D−−corner:

q±(ωλ±) =
(
λ1 − k + 3

2 , λ2 − k + 5
2 , . . . , λk−1 − 1

2 ,±
1
2

)
,

q±(ωλ∓) =
(
λ1 − k + 3

2 , λ2 − k + 5
2 , . . . , λk−1 − 1

2 ,∓(λk−1 − 1
2 )
)
.

We find that again each of these unitary representation has one fun-
damental corner (q+(ωλ+), resp. q−(ωλ−)), and the other corner is not
fundamental.

To summarize, we see that π ∈ ÙG0 with exactly one fundamental corner
is unitary; its fundamental corner we denote by q(π). For all the others
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DOMAGOJ KOVAČEVIĆ HRVOJE KRALJEVIĆ

π ∈ Ĝ0 one has q1(π) = q2(π) and we denote by q(π) this unique corner
of π.

Theorem 2. π 7→ q(π) is a bijection of Ĝ0 onto K̂.

Detailed proof can be find in [7].

Consider now minimal K−types in the sense of Vogan: we say that
q ∈ K̂ is a minimal K−type of the representation π if q ∈ Γ(π) and

‖q + 2ρK‖ = min {‖q′ + 2ρK‖; q′ ∈ Γ(π)}.

For q ∈ K̂ we have

‖q+ 2ρK‖2 = (m1 + 2k− 2)2 + (m2 + 2k− 4)2 + · · ·+ (mk−1 + 2)2 +m2
k

and so we find:

If λ ∈ Λ ∩
(

1
2 + Z

)k
, i.e. λ ∈ Λ∗ and Γ(τλj ) ⊆ Zk, the representation τλj

has unique minimal K−type which we denote by qV (τλj ) :

qV (τλ1 ) =
(
λ2 − k + 3

2 , λ3 − k + 5
2 , . . . , λk −

1
2 , 0
)
,

qV (τλj ) =
(
λ1 − k + 3

2 , . . . , λj−1 − k + j − 1
2 ,

λj+1 − k + j + 1
2 , . . . , λk −

1
2 , 0
)
, 2 ≤ j ≤ k − 1,

qV (τλk ) =
(
λ1 − k + 3

2 , λ2 − k + 5
2 , . . . , λk−1 − 1

2 , 0
)
.

If λ ∈ Λ ∩ Zk, i.e. Γ(τλj ) ⊆
(

1
2 + Z

)k
, the representation τλj has two

minimal K−types qV+(τλj ) and qV−(τλj ) :

qV±(τλ1 ) =
(
λ2 − k + 3

2 , λ3 − k + 5
2 , . . . , λk −

1
2 ,±

1
2

)
,

qV±(τλj ) =
(
λ1 − k + 3

2 , . . . , λj−1 − k + j − 1
2 ,

λj+1 − k + j + 1
2 , . . . , λk −

1
2 ,±

1
2

)
, 2 ≤ j ≤ k − 1,

qV±(τλk ) =
(
λ1 − k + 3

2 , λ2 − k + 5
2 , . . . , λk−1 − 1

2 ,±
1
2

)
.

Finally, for every λ ∈ Λ the representation ωλ± has unique minimal
K−type:

qV (ωλ±) =
(
λ1 − k + 3

2 , λ2 − k + 5
2 , . . . , λk−1 − 1

2 ,±(λk + 1
2 )
)
.

So we see that if π ∈ ÙG0 has two minimal K−types it is not unitary. Fur-
ther, every π ∈ Ĝ0 has unique minimal K−type qV (π) and it coincides
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with q(π). But there exist nonunitary representations in ÙG0 that have

unique minimal K−type: this property have all τλj for λ ∈ Λ∩
(

1
2 + Z+

)k
that are not subquotients of the ends of complementary series. In other
words, unitarity of a representation π ∈ ÙG0 is not completely character-
ized by having unique minimal K−type.

4 Representations of Spin(2k + 1, 1)

For σ = (n1, . . . , nk) ∈ M̂ ∩Zk and ν ∈ C the elementary representation
πσ,ν is irreducible if and only if either ν 6∈ Z or

ν ∈ {0,±1, . . . ,±|nk|,±(nk−1 + 1),±(nk−2 + 2), . . . ,±(n1 + k − 1)}.

For σ ∈ M̂ ∩
(

1
2 + Z

)k
and ν ∈ C the representation πσ,ν is irreducible

if and only if either ν 6∈
(

1
2 + Z

)
or

ν ∈
{
± 1

2 , . . . ,±|nk|,±(nk−1 + 1),±(nk−2 + 2), . . . ,±(n1 + k − 1)
}
.

If the elementary representation πσ,ν is reducible, it always has two
irreducible subquotients which will be denoted by τσ,ν and ωσ,ν . The
K−spectra of these representations consist of all q = (m1, . . . ,mk) ∈
K̂ ∩ (n1 + Z)k that satisfy:

(i) If nk−1 > |nk| and ν ∈ {±(|nk|+ 1),±(|nk|+ 2), . . . ,±nk−1} :

Γ(τσ,ν) : m1 ≥ n1 ≥ · · · ≥ mk−1 ≥ nk−1 and |ν| − 1 ≥ mk ≥ |nk|,

Γ(ωσ,ν) : m1 ≥ n1 ≥ · · · ≥ mk−1 ≥ nk−1 ≥ mk ≥ |ν|.

(ii) If nj−1 > nj for some j ∈ {2, . . . , k − 1} and

ν ∈ {±(nj + k − j + 1),±(nj + k − j + 2), . . . ,±(nj−1 + k − j)} :

Γ(τσ,ν) : m1 ≥ n1 ≥ · · · ≥ mj−1 ≥ nj−1 and

|ν| − k + j − 1 ≥ mj ≥ nj ≥ · · · ≥ mk ≥ |nk|,

Γ(ωσ,ν) : m1 ≥ n1 ≥ · · · ≥ mj−1 ≥ nj−1 ≥ mj ≥ |ν| − k + j and

nj ≥ mj+1 ≥ · · · ≥ mk ≥ |nk|.

(iii) If ν ∈ {±(n1 + k),±(n1 + k + 1), . . .} :

Γ(τσ,ν) : |ν| − k ≥ m1 ≥ n1 ≥ · · · ≥ mk ≥ |nk|,

Γ(ωσ,ν) : m1 ≥ |ν| − k + 1 and n1 ≥ m2 ≥ n2 ≥ · · · ≥ mk ≥ |nk|.
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Similarly to the case of even n = 2k we now write down the infinitesimal
characters of reducible elementary representations πσ,ν (and so of its irre-
ducible subquotients τσ,ν and ωσ,ν too). We know that the infinitesimal
character of πσ,ν is χΛ(σ,ν), where

Λ(σ, ν) = (n1 + k − 1, n2 + k − 2, . . . , nk−1 + 1, nk, ν).

Since ν ∈ 1
2Z ⊂ R = a∗0 we have Λ(σ, ν) ∈ it∗0 ⊕ a∗0 = Rk+1. We choose

positive Weyl chamber in Rk+1

D = {λ ∈ Rk+1; λ1 > λ2 > · · · > λk > |λk+1| > 0}

and again denote by λ(σ, ν) the unique point of WΛ(σ, ν) ∩D. We now
write down λ(σ, ν) for all reducible elementary representations πσ,ν . In
the following for σ = (n1, . . . , nk) ∈ M̂ we write −σ for its contragredient
class in M̂ : −σ = (n1, . . . , nk−1,−nk). Without loss of generality we can
suppose that ν ≥ 0 because πσ,ν and π−σ,−ν have equivalent irreducible
subquotients and because Λ(σ, ν) is W−conjugated with Λ(−σ,−ν) :
multiplying the last two coordinates by −1.

If nk−1 > |nk| and ν ∈ {|nk|+ 1, |nk|+ 2, . . . , nk−1},

λ(σ, ν) = (n1 + k − 1, n2 + k − 2, . . . , nk−1 + 1, ν, nk).

If 2 ≤ j ≤ k − 1, nj−1 > nj and ν ∈ {nj + k − j + 1, . . . , nj−1 + k − j},

λ(σ, ν) = (n1 +k−1, . . . , nj−1 +k−j+1, ν , nj+k−j, . . . , nk−1 +1, nk).

If ν ∈ {n1 + k, n1 + k + 1, . . .},

λ(σ, ν) = (ν, n1 + k − 1, . . . , nk−1 + 1, nk).

Similarly to the case of even n we see that now every reducible elementary
representation has infinitesimal character χλ with λ ∈ Λ, where

Λ =
¶
λ ∈ Zk+1 ∪

(
1
2 + Z

)k+1
; λ1 > λ2 > · · · > λk > |λk+1|

©
.

We again write Λ as the disjoint union Λ = Λ∗ ∪ Λ0, where

Λ∗ =
¶
λ ∈ Zk+1 ∪

(
1
2 + Z

)k+1
; λ1 > λ2 > · · · > λk > |λk+1| > 0

©
,

Λ0 = {λ ∈ Zk+1
+ ; λ1 > λ2 > · · · > λk > 0, λk+1 = 0}.

As shown in [7] we have
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Theorem 3. (i) For every λ ∈ Λ∗ there exist k+ 1 ordered pairs (σ, ν),
σ = (n1, . . . , nk) ∈ M̂, ν ≥ 0, such that χλ is the infinitesimal character
of πσ,ν . These are (σj , νj), where νj = λj for 1 ≤ j ≤ k, νk+1 = |λk+1|
and

σ1 = (λ2 − k + 1, λ3 − k + 2, . . . , λk − 1, λk+1),

σj = (λ1 − k + 1, . . . , λj−1 − k + j − 1, λj+1 − k + j, . . . , λk − 1, λk+1),

2 ≤ j ≤ k − 1,

σk = (λ1 − k + 1, λ2 − k + 2, . . . , λk−1 − 1, λk+1),

σk+1 =

®
(λ1 − k + 1, λ2 − k + 2, . . . , λk−1 − 1, λk) if λk+1 > 0,

(λ1 − k + 1, λ2 − k + 2, . . . , λk−1 − 1,−λk) if λk+1 < 0,

πσj ,νj , 1 ≤ j ≤ k, are reducible, while πσk+1,νk+1 is irreducible.

(ii) For λ ∈ Λ0 there exist k + 2 ordered pairs (σ, ν), σ = (n1, . . . , nk) ∈
M̂, ν ≥ 0, such that χλ is the infinitesimal character of πσ,ν . These are
the (σj , νj), where νj = λj for 1 ≤ j ≤ k, νk+1 = νk+2 = 0 and

σ1 = (λ2 − k + 1, λ3 − k + 2, . . . , λk − 1, 0),

σj = (λ1 − k + 1, . . . , λj−1 − k + j − 1, λj+1 − k + j, . . . , λk − 1, 0),

2 ≤ j ≤ k − 1,

σk = (λ1 − k + 1, λ2 − k + 2, . . . , λk−1 − 1, 0),

σk+1 = (λ1 − k + 1, λ2 − k + 2, . . . , λk−1 − 1, λk),

σk+2 = (λ1 − k + 1, λ2 − k + 2, . . . , λk−1 − 1,−λk).

πσj ,νj , 1 ≤ j ≤ k, are reducible, while πσk+1,0 and πσk+2,0 are irreducible.

We note that in fact the representations πσk+1,0 and πσk+2,0 are equiv-
alent, but this is unimportant for studying and parametrizing ÙG0 and Ĝ0.

Fix λ ∈ Λ. By Theorem 3. there exist k ordered pairs (σ, ν), σ ∈ M̂,
ν ≥ 0, with reducible πσ,ν having χλ as the infinitesimal character.
There are k + 1 mutually inequivalent irreducible subquotients of these
elementary representations; we denote them τλ1 , . . . , τ

λ
k , ω

λ : τλj = τσj ,νj ,

1 ≤ j ≤ k, ωλ = ωσk,νk . Note that ωσj ,νj ∼= τλj+1 for 1 ≤ j ≤ k−1. Their
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K−spectra consist of all q = (m1, . . . ,mk) ∈ K̂ ∩ (n1 + Z)k satisfying:

Γ(τλ1 ) : λ1 − k ≥ m1 ≥ λ2 − k + 1 ≥ m2 ≥ · · · ≥ λk − 1 ≥ mk ≥ |λk+1|.

Γ(τλj ) : m1 ≥ λ1 − k + 1 ≥ · · · ≥ mj−1 ≥ λj−1 − k + j − 1 and

λj − k + j − 1 ≥ mj ≥ · · · ≥ λk − 1 ≥ mk ≥ |λk+1|

for 2 ≤ j ≤ k.

Γ(ωλ) : m1 ≥ λ1 − k + 1 ≥ · · · ≥ mk−1 ≥ λk−1 − 1 ≥ mk ≥ λk.

The definitions of corners and fundamental corners do not have sense
when rank k < rank g. Consider the Vogan’s minimal K−types. Note
that now

‖q + 2ρK‖2 = (m1 + 2k − 1)2 + (m2 + 2k − 3)2 + · · ·+ (mk + 1)2,

so every π ∈ ÙG0 has unique minimal K−type that will be denoted by
qV (π) : this is the element (m1, . . . ,mk) ∈ Γ(π) whose every coordinate
mj is the smallest possible.

Theorem 4. The map π 7→ qV (π) is a surjection of ÙG0 onto K̂. More
precisely, for every q = (m1, . . . ,mk) ∈ K̂ :

(a) There exist infinitely many λ’s in Λ such that qV (τλ1 ) = q.

(b) Let j ∈ {2, . . . , k}. The number of λ’s in Λ such that qV (τλj ) = q is:

0 if mj−1 = mj ,

mj−1 −mj if mj−1 > mj and mk = 0,

2(mj−1 −mj) if mj−1 > mj and mk > 0.

(c) The number of λ’s in Λ such that qV (ωλ) = q is:

0 if mk < 1,
1 if mk = 1,
2
⌊
mk − 1

2

⌋
if mk > 1.

Proof. (a) These are all λ ∈ Λ such that

λ1 ∈ (m1 + k + Z+), λj = mj−1 + k − j + 1 2 ≤ j ≤ k, λk+1 = ±mk.

(b) These are all λ ∈ Λ such that λs = ms + k − s for 1 ≤ s ≤ j − 1,
λs = ms−1 + k − s + 1 for j + 1 ≤ s ≤ k, λj−1 > λj > λj+1 and
λk+1 = ±mk.
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(c) These are all λ ∈ Λ such that

λs = ms + k − s, 1 ≤ s ≤ k, |λk+1| < mk.

We now parametrize Ĝ0. A class in ÙG0 is unitary if and only if it is an
irreducible subquotient of an end of complementary series. For σ ∈ M̂
the complementary series is nonempty if and only if σ is selfcontragre-
dient, i.e. σ = (n1, . . . , nk−1, 0). In this case we set ν(σ) = min {ν ≥
0; πσ,ν is reducible}. From the necessary and sufficient conditions for
reducibility of elementary representations we find:

(i) If n1 = · · · = nk−1 = 0, i.e. if σ = σ0 = (0, . . . , 0) is the triv-
ial onedimensional representation of M, then ν(σ0) = k. In this case
Γ(τσ0,k) = {(0, . . . , 0)} and Γ(ωσ0,k) = {(s, 0, . . . , 0); s ∈ N} and so
qV (τσ0,k) = (0, . . . , 0) and qV (ωσ0,k) = (1, 0, . . . , 0).

(ii) If n1 > 0, let j ∈ {2, . . . , k} be the smallest index such that nj−1 > 0.
Then ν(σ) = k − j + 1. The K−spectra of irreducible subquotients of
πσ,k−j+1 are

Γ(τσ,k−j+1) : m1 ≥ n1 ≥ · · · ≥ mj−1 ≥ nj−1

and ms = 0 ∀s ≥ j,

Γ(ωσ,k−j+1) : m1 ≥ n1 ≥ · · · ≥ mj−1 ≥ nj−1 ≥ mj ≥ 1

and ms = 0 ∀s > j.

So we have

qV (τσ,k−j+1) = (n1, . . . , nj−1, 0, . . . , 0),

qV (ωσ,k−j+1) = (n1, . . . , nj−1, 1, 0, . . . , 0).

Thus, we have proved

Theorem 5. The map π 7→ qV (π) is a bijection of Ĝ0 onto

K̂0 = {q = (m1, . . . ,mk) ∈ K̂; mk = 0}.
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University of Zagreb, Faculty of Science, Department of
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