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A note on a category composition

Nikica Uglešić

Abstract

The special properties of an abstract category morphism (for instance,
being an identity, an isomorphism, an epimorphism., a monomorphism
. . . ) fully depend on the category composition. Consequently, an iso-
morphic category to a concrete category may be not concrete, i.e., the
concreteness is not a category invariant. Further, every small category
is isomorphic to a small category whose objects are sets and whose mor-
phisms are functions between those sets.
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1 Introduction

One often thinks that in a category whose objects are somehow enriched
sets and the morphisms are the structure preserving set functions, a spe-
cial property of a morphism (being an identity, isomorphism, epi, mono
. . . ) of the category is its “internal” one. However, it is an illusion, since
we show that the category composition is “in charge”, i.e., it brings a
special property to a morphism. In a concrete category only, being an
identity and being an isomorphism are the internal properties.

We follow the category theory language of [2]. Hereby, we reduce the
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notation of a category C = (O,M, dom, cod, ◦) to (O,M, ◦) by assum-
ing that the morphism sets (members of the class M) are pairwise dis-
joint. (Equivalently, a category morphism is assumed to be an ordered
triple: (dom-object, arrow, cod-object)) Further, without loss of gener-
ality, we consider a concrete category to be a category admitting the
forgetful functor whose objects are sets endowed with a structure and
whose morphisms are functions, between those sets, “preserving” the
structure. Of course, the cases without any structure are included, i.e.,
all subcategories of the category Set of all sets and all (set) functions.

2 Facta and proofs

Theorem 1. Let C be a category having the class ObC ≡ O of objects,
the class MorC ≡ M of all the morphism sets C(X,Y ), (X,Y ) ∈ O×O,
and the composition

◦ : C(X,Y )× C(Y, Z)→ C(X,Z), (f, g) 7→ ◦(f, g) ≡ g ◦ f,

X, Y, Z ∈ O.Further, let O′ be a class and let, for every ordered pair
(X ′, Y ′) ∈ O′ × O′, a set M(X ′, Y ′) be given such that these sets are
pairwise disjoint. Assume that there exist a bijection

Φ : O → O′, X 7→ Φ(X) ≡ X ′,

and, for every ordered pair (X,Y ) ∈ O ×O, a bijection

ΦX
Y : C(X,Y )→M(Φ(X),Φ(Y )) ≡M(X ′, Y ′), f 7→ ΦX

Y (f) ≡ f ′,

(i) Then the rule

(∀X,Y, Z ∈ O)(∀f ∈ C(X,Y )(∀g ∈ C(Y,Z) ΦY
Z (g) ∗ ΦX

Y (f) = ΦX
Z (g ◦ f),

(1)

defines a class of set functions

∗ : M(X ′, Y ′)×M(Y ′, Z ′)→M(X ′, Z ′),

(f ′, g′) 7→ ∗(f ′, g′) ≡ g′ ∗ f ′, X ′, Y ′, Z ′ ∈ O′

such that the class O′ (as objects), the classM′ of all sets M(X ′, Y ′) (as
morphisms) and “∗” (as the composition) make a category C′. Moreover,
the bijection Φ and all the bijections ΦX

Y induce a functor

F : C → C′, X 7→ F (X) = Φ(X) ≡ X ′, f 7→ F (f) = ΦX
Y (f) ≡ f ′,
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that is an isomorphism of the categories.

(ii) If ∼ is a natural equivalence relation on MorC, then the rule

(f ′1 = ΦX
Y (f1) ∼′ ΦX

Y (f2) = f ′2)⇔ (f1 ∼ f2) (2)

defines a natural equivalence relation on MorC′, and the induced functor

F̃ : C/ ∼→ C′/ ∼′, X 7→ F̃ (X) = Φ(X) ≡ X ′,

[f ] 7→ F̃ ([f ]) = [F (f)]′ = [ΦX
Y (f)]′ ≡ [f ′]′,

is an isomorphism of the quotient categories.

Proof. (i). Given X ′, Y ′, Z ′ ∈ O′, the function ∗ is well defined because
the function Φ and all the functions ΦX

Y , X,Y ∈ O, are bijective, and
thus, with each element (f ′, g′), (f ′ = ΦX

Y (f), g′ = ΦY
Z (g)) of the domain,

it is associated the unique element g′ ∗ f ′ ≡ ∗(f ′, g′) (= ΦX
Z (g ◦ f)) of

the codomain. Now one straightforwardly verifies the needed category
and functor conditions. For instance, let u′ ∈ M(X ′, X ′) such that
X ′ = Φ(X) and u′ = ΦX

X(1X), and let f ′ ∈M(X ′, Y ′), Y ′ ∈ O′. By the
assumptions, then there exists a unique f ∈ C(X,Y ) such that

f ′ = ΦX
Y (f) ∈ ΦX

Y (Φ(X),Φ(Y )) = M(X ′, Y ′).

Then

f ′ ∗ u′ = ΦX
Y (f) ∗ ΦX

X(1X) = ΦX
Y (f ◦ 1X) = ΦX

Y (f) = f ′.

Similarly, for every g′ ∈M(Z ′, X ′), Z ′ ∈ O′, it holds u′ ∗ g′ = g′. There-
fore, u′ is the unique identity morphism 1X′ with respect to ∗.

(ii). Again by the mentioned bijectivity, the relation ∼′ is well defined
on each set

M(X ′, Y ′) = C′(Φ(X),Φ(Y )), X ′, Y ′ ∈ O′ = ObC′.

Then the accordance to the composition ∗ follows by the same property
of ∼ with respect to ◦. The rest follows straightforwardly.

Example 1. Let C ⊆ Set be the full subcategory determined by the
objects (sets) A = {1} and B = {2, 3}. Then, clearly,

C(A,A) = {1A ≡ u}, C(A,B) = {c2 ≡ f1, c3 ≡ f2},

C(B,A) = {c1 ≡ g}, C(B,B) = {1B ≡ v1, p ≡ v2, c2 ≡ v3, c3 ≡ v4},
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where c’s are the appropriate constant functions while p is the permuta-
tion. Let O′ = {A′, B′}, where A′ and B′ are sets containing at least
one and two elements respectively. Further, let

M(A′, A′) = {u′}, M(A′, B′) = {f ′1, f ′2}

M(B′, A′) = {g′}, M(B′, B′) = {v′1, v′2, v′3, v′4},

where the elements of all those sets are arbitrarily chosen corresponding
functions. (For instance, if card(A′) ≥ 2, then one may choose u′ to
be a non-identity function, while if card(B′) ≥ 4, then one may choose
all v’si to be the constant functions.) Now, according to Theorem 1,
C′ ≡ (ObC′,MorC′, ∗), where ObC′ = O′,

MorC′ = {M(X ′, Y ′) | X ′, Y ′ ∈ {A′, B′}}

and

∗ : M(X ′, Y ′)×M(Y ′, Z ′)→M(X ′, Z ′),

∗(s′, t′) ≡ s′ ∗ t′ = s ◦ t, X ′, Y ′, Z ′ ∈ {A′, B′},

is a category and

F : C → C′, X 7→ F (X) = X ′, s 7→ F (s) = s′,

is a category isomorphism. So, we see that any function u′ on A′ (v′ on
B′) can become the identity morphism 1A′ (1B′) in C′. Also, any function
on B′ can become an isomorphism in C′. Notice that the category C is
concrete, while to it isomorphic category C′ is not concrete, because it
does not admit the forgetful functor. Finally, notice that by choosing the
other bijection of C(A,B) onto M(A′, B′) and any bijection of C(B,B)
onto M(B′, B′), a new category isomorphism appears.

An immediate consequence of Theorem 1 and the axiom of choice reads
as follows.

Corollary 1. Let C = (ObC,MorC, ◦) be a category, and let, for each
X ∈ ObC, an uX ∈ C(X,X) be chosen. Then there exists a composition
∗ on MorC such that

(ObC,MorC, ∗) ≡ C′

is a category isomorphic to C and the class

{1X | X ∈ ObC} ⊆MorC′

of all identity morphism of C′ is the class

{uX | X ∈ ObC} ⊆MorC.
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Further, let for each ordered pair (X,Y ) ∈ ObC × ObC, such that X is
isomorphic to Y in C, a morphism fX

Y ∈ C(X,Y ) be given. Then there
exists a composition • on MorC such that (ObC,MorC, •) ≡ C′′ is a
category isomorphic to C and to C′, and each chosen

fX
Y ∈ C′′(X,Y ) = C(X,Y )

is an isomorphism of C′′.

Though Theorem 1 might seem to be artificial, its importance and use-
fulness confirms the following theorem which shows that every small cat-
egory is isomorphic to a small category whose objects and morphisms
are sets and set functions respectively. (The axiom of choice is assumed!)
However, in general, it is not a concrete one.

Theorem 2. Let C = (ObC,MorC, ◦) be a small category. Then there
exist a proper subclass O′ & Ob(Set), that is a set of sets, a proper
subclass M′ & Mor(Set), that is a set of sets of functions, and a com-
position ∗ on M′ such that C′ ≡ (O′,M′, ∗) is a category isomorphic to
C. In addition, one can achieve that M′ does not contain any bijection.

Proof. Since all the members of MorC are sets and since there is no
maximal cardinal, it follows that, for every ordered pair (X,Y ) ∈ ObC ×
ObC, there are ordered pairs (A′, B′) and (A′′, B′′) of sets such that

card(C(X,Y )) ≤ card(Set(A′, B′)) and

card(C(Y,X)) ≤ card(Set(B′′, A′′)).

Notice that if S, T , S′, T ′ are sets such that card(S) ≤ card(S′) and
card(T ) ≤ card(T ′), then

card(Set(S, T )) ≤ card(Set(S′, T ′)).

Consequently, for a given pair X,Y ∈ ObC, there exists a pair A,B ∈
Ob(Set) such that

card(C(X,Y )) ≤ card(Set(A,B)) and

card(C(Y,X))} ≤ card(Set(B,A)).

Now, by assuming the axiom of choice, every set can be well ordered,
and therefor, since C is a small category, i.e., ObC is a set, there exists a
well ordered set J ≡ (J,≤) such that

ObC = {Xj | j ∈ J}.
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Further, there exists a bijective function of ObC onto a subclass S ⊆
Ob(Set) (which is a set having the complement Ob(Set) \ S that is a
(proper) class!)

(Xj ∈ ObC) 7→ (Sj ∈ S), j ∈ J.

However, we need a very special such a subclass. In order to simplify
our speech, let us say that a family {Aj | j ∈ J} of sets Aj is suitable,
with respect to C, for some member Aj′ , if, for each j ∈ J ,

card(C(Xj′ , Xj)) ≤ card(Set(Aj′ , Aj)) and

card(C(Xj , Xj′)) ≤ card(Set(Aj , Aj′)).

We are to construct such a family {Aj | j ∈ J} of sets, i.e., a certain
set O′ ⊆ Ob(Set), which is suitable, with respect to C, for each its
member Aj , j ∈ J . The construction is by transfinite induction. Denote
min(J,≤) ≡ j0. Firstly, there exist a family of sets {Bj | j ∈ J} and sets
B′j0 and B′′j0 such that, for each j ∈ J ,

card(C(Xj0 , Xj)) ≤ card(Set(B′j0 , Bj)) and

card(C(Xj , Xj0)) ≤ card(Set(Bj , B
′′
j0)).

Then by choosing any set Aj0 such that

max{card(Bj0), card(B′j0), card(B′′j0)} ≤ card(Aj0),

the family {Aj0} ∪ {Bj | j0 < j} is suitable, with respect to C, for Aj0 .
We proceed by transfinite construction (see [1], II.5.2). Given a j1 ∈ J ,
j0 < j1 (no matter of the kind, i.e., having an immediate predecessor or
being a limit one), assume that a family

{Aj | j < j1} ∪ {B′j | j1 ≤ j}

is constructed which is suitable, with respect to C, for each Aj , j < j1.
It remains to construct a set Aj1 and a family of sets {B′′j | j1 < j} such
that the family

{Aj | j ≤ j1} ∪ {B′′j | j1 < j}

is suitable, with respect to C, for each Aj , j ≤ j1. In order to do it, notice
that, if Cj , j1 ≤ j, are sets such that card(B′j) ≤ card(Cj), j1 ≤ j, the
new family

{Aj | j < j1} ∪ {Cj | j1 ≤ j}

is still suitable, with respect to C, for each Aj′ , j < j1. Clearly, there is
such a Cj1 satisfying

card(C(Xj1 , Xj1)) ≤ card(Set(Cj1 , Cj1))
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Further, in addition, similarly to the basic step, there exist sets C ′j1 and
C ′′j1 such that the family

{Aj | j < j1} ∪ {Cj | j1 < j}

has, for each j 6= j1, the properties

card(C(Xj1 , Xj)) ≤

{
card(Set(C ′j1 , Aj)), j < j1,

card(Set(C ′j1 , Cj)), j1 < j,

and

card(C(Xj , Xj1)) ≤

{
card(Set(Aj , C

′′
j1

)), j < j1,

card(Set(Cj , C
′′
j1

)), j1 < j.

Finally, there exists a set C ′′′j1 such that

max{card(Cj1), card(C ′j1), card(C ′′j1))} ≤ card(C ′′′j1 ).

Now, since card(B′j) ≤ card(Cj), it is obvious that, by putting Aj1 ≡ C ′′′j1
and B′′j = Cj , j1 < j, the family

{Aj | j ≤ j1} ∪ {B′′j | j1 < j}

is suitable, with respect to C, for each Aj , j ≤ j1. This completes the
inductive proof assuring the existence of a bijection

Φ : ObC ≡ O → O′, Xj 7→ Φ(Xj) = Aj , j ∈ J.

and, for every ordered pair (j, j′) ∈ J × J , existence of an injection

Φj
j′ : C(Xj , Xj′)→ Set(Φ(Xj),Φ(Xj′)) = Set(Aj , Aj′).

Finally, for every (j, j′) ∈ J × J , choose

M(Aj , Aj′) = Φj
j′ [C(Xj , Xj′)] ⊆ Set(Aj , Aj′).

The statement now follows by Theorem 1. For the additional statement,
one has also to choose (inductively) the sets Aj , j ∈ J , of increasing
cardinalities.

Remark 1. By [2], III. 4.7, p. 25, the standard homotopy category of
topological spaces, HTop, is not a concrete category. A simple proof of
that statement may be as follows. Consider the segment I ≡ [0, 1] ⊆ R,
the singleton {0}, the constant mapping c : I → {0} and any inclusion
mapping it : {0} → I, t ∈ I. Then the homotopy classes [c] and [it]
are isomorphisms of HTop and moreover [it] = [c]−1, while itc 6= 1I .
Therefore, there is no forgetful functor of HTop to Set.
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According to Remark 1, the full subcategory HQ ⊆ HTop, determined
by all closed subsets of the Hilbert cube Q, is not a concrete category.
Since it is a small category, Theorems 1 and 2 imply the following fact.

Corollary 2. The homotopy category HQ is isomorphic to a small cat-
egory whose objects are sets and whose morphisms are functions of those
sets.
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