Nonelementary irreducible representations of $\operatorname{Spin}(n, 1)$

Domagoj Kovačević, Hrvoje Kraljević

Abstract

We study corners and fundamental corners of the irreducible subquotients of reducible elementary representations of the groups $G=\operatorname{Spin}(n, 1)$. For even n we obtain results in a way analogous to the results in [8 for the groups $\mathrm{SU}(n, 1)$. Especially, we again get a bijection between the nonelementary part \hat{G}^{0} of the unitary dual \hat{G} and the unitary dual \hat{K}. In the case of odd n we get a bijection between \hat{G}^{0} and a true subset of \hat{K}.

Keywords: $\operatorname{Spin}(n, 1)$, unitary representations, fundamental corners 2010 Math. Subj. Class.: 20G05, 16S30

1 Introduction

1.1 Elementary representations

Let G be a connected semisimple Lie group with finite center, \mathfrak{g}_{0} its Lie algebra, K its maximal compact subgroup, and $\mathfrak{g}_{0}=\mathfrak{k}_{0} \oplus \mathfrak{p}_{0}$ the corresponding Cartan decomposition of \mathfrak{g}_{0}. Let \mathfrak{a}_{0} be a Cartan subspace of \mathfrak{p}_{0}, A the corresponding vector subgroup of G and M (resp. \mathfrak{m}_{0}) the centralizer of A in K (resp. of \mathfrak{a}_{0} in \mathfrak{k}_{0}). Let $P=M A N$ be the minimal parabolic subgroup of G corresponding to a choice of positive restricted roots of the pair $\left(\mathfrak{g}_{0}, \mathfrak{a}_{0}\right)$. For any compact group L its unitary dual will be denoted by \hat{L}. Furthermore, we denote by \mathfrak{l} the complexification of a
real vector space \mathfrak{l}_{0}. For $\sigma \in \hat{M}$ and $\nu \in \mathfrak{a}^{*}$ let $\pi^{\sigma, \nu}$ be the corresponding elementary representation of G - the representation parabolically induced by the representation $\sigma \otimes \nu$ of P.

From classical results of Harish-Chandra we know that all elementary representations are admissible and of finite length and that every completely irreducible admissible representation of G on a Banach space is infinitesimally equivalent to an irreducible subquotient of an elementary representation. Infinitesimal equivalence of completely irreducible admissible representations is equivalent to algebraic equivalence of the corresponding (\mathfrak{g}, K)-modules. We will denote by \widehat{G} the set of all infinitesimal equivalence classes of completely irreducible admissible representations of G on Banach spaces. \widehat{G}^{e} will denote the set of infinitesimal equivalence classes of irreducible elementary representations and $\widehat{G}^{0}=\widehat{G} \backslash \widehat{G}^{e}$ the set of infinitesimal equivalence classes of irreducible suquotients of reducible elementary representations. It is also due to Harish-Chandra that every irreducible unitary representation is admissible and that infinitesimal equivalence between such representations is equivalent to their unitary equivalence. Thus the unitary dual \hat{G} of G can be regarded as a subset of \widehat{G}. We denote $\hat{G}^{e}=\hat{G} \cap \widehat{G}^{e}$ and $\hat{G}^{0}=\hat{G} \cap \widehat{G}^{0}=\hat{G} \backslash \hat{G}^{e}$.

1.2 Infinitesimal characters

We denote by $\mathcal{U}(\mathfrak{g})$ the universal enveloping algebra of \mathfrak{g} and by $\mathfrak{Z}(\mathfrak{g})$ its center. We denote by $\hat{\mathfrak{Z}}(\mathfrak{g})$ the set of all infinitesimal characters (unital homomorphisms $\mathfrak{Z}(\mathfrak{g}) \longrightarrow \mathbb{C}$) of \mathfrak{g}. Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}, $\Delta=\Delta(\mathfrak{g}, \mathfrak{h}) \subseteq \mathfrak{h}^{*}$ the root system of the pair $(\mathfrak{g}, \mathfrak{h})$ and $W=W(\mathfrak{g}, \mathfrak{h})$ its Weyl group. Denote by $\mathcal{P}\left(\mathfrak{h}^{*}\right)$ the polynomial algebra over \mathfrak{h}^{*} and by $\omega=\omega_{\mathfrak{h}}$ the Harish-Chandra isomorphism of $\mathfrak{Z}(\mathfrak{g})$ onto the algebra $\mathcal{P}\left(\mathfrak{h}^{*}\right)^{W}$ of W-invariant polynomials on \mathfrak{h}^{*}. For $\lambda \in \mathfrak{h}^{*}$ define $\chi_{\lambda} \in \hat{\mathfrak{Z}}(\mathfrak{g})$ by $\chi_{\lambda}(z)=(\omega(z))(\lambda), z \in \mathfrak{Z}(\mathfrak{g})$. Then $\lambda \mapsto \chi_{\lambda}$ is a surjection of \mathfrak{h}^{*} onto $\hat{\mathfrak{Z}}(\mathfrak{g})$ and for $\lambda, \mu \in \mathfrak{h}^{*}$ one has $\chi_{\lambda}=\chi_{\mu}$ if and only if $\mu=w \lambda$ for some $w \in W$.

It is well known that every elementary representation $\pi^{\sigma, \lambda}$ has infinitesimal character. To describe it chose a Cartan subalgebra \mathfrak{d}_{0} of \mathfrak{m}_{0} and let $\Delta_{\mathfrak{m}}^{+}$be a choice of positive roots of the pair $(\mathfrak{m}, \mathfrak{d})$. Set $\delta_{\mathfrak{m}}=\frac{1}{2} \sum_{\alpha \in \Delta_{\mathfrak{m}}^{+}} \alpha$. Denote by $\lambda_{\sigma} \in \mathfrak{d}^{*}$ the highest weight of the representation σ with respect to $\Delta_{\mathfrak{m}}^{+}$. Now, $\mathfrak{h}_{0}=\mathfrak{d}_{0} \dot{+} \mathfrak{a}_{0}$ is a Cartan subalgebra of \mathfrak{g}_{0} and the infinitesimal character of the elementary representation $\pi^{\sigma, \nu}$ is $\chi_{\Lambda(\sigma, \nu)}$,
where $\Lambda(\sigma, \nu) \in \mathfrak{h}^{*}$ is given by

$$
\left.\Lambda(\sigma, \nu)\right|_{\mathfrak{o}}=\lambda_{\sigma}+\delta_{\mathfrak{m}} \quad \text { and }\left.\quad \Lambda(\sigma, \nu)\right|_{\mathfrak{a}}=\nu
$$

1.3 Corners and fundamental corners

Suppose now that the rank of \mathfrak{g} is equal to the rank of \mathfrak{k}. Choose a Cartan subalgebra \mathfrak{t}_{0} of \mathfrak{k}_{0}. Let $\Delta_{K}=\Delta(\mathfrak{k}, \mathfrak{t}) \subseteq \Delta=\Delta(\mathfrak{g}, \mathfrak{t})$ be the root systems of the pairs $(\mathfrak{k}, \mathfrak{t})$ and $(\mathfrak{g}, \mathfrak{t})$ and $W_{K}=W(\mathfrak{k}, \mathfrak{t}) \subseteq W=W(\mathfrak{g}, \mathfrak{t})$ the corresponding Weyl groups. Choose positive roots Δ_{K}^{+}in Δ_{K} and let C be the corresponding W_{K}-Weyl chamber in $\mathfrak{t}_{\mathbb{R}}^{*}=i \mathfrak{t}_{0}^{*}$. Denote by \mathcal{D} the set of all W-Weyl chambers in $i \epsilon_{0}^{*}$ contained in C. For $D \in \mathcal{D}$ we denote by Δ^{D} the corresponding positive roots in Δ and let Δ_{P}^{D} denotes the noncompact roots in Δ^{D}, i.e. $\Delta_{P}^{D}=\Delta^{D} \backslash \Delta_{K}^{+}$. Set

$$
\rho_{K}=\frac{1}{2} \sum_{\alpha \in \Delta_{K}^{+}} \alpha \quad \text { and } \quad \rho_{P}^{D}=\frac{1}{2} \sum_{\alpha \in \Delta_{P}^{D}} \alpha
$$

Recall some definitions from [8]. For a representation π of G and for $q \in$ \hat{K} we denote by $(\pi: q)$ the multiplicity of q in $\pi \mid K$. The K-spectrum $\Gamma(\pi)$ of a representation π of G is defined by

$$
\Gamma(\pi)=\{q \in \hat{K} ; \quad(\pi: q)>0\} .
$$

We identify $q \in \hat{K}$ with its maximal weight in $i t_{0}^{*}$ with respect to Δ_{K}^{+}. For $q \in \Gamma(\pi)$ and for $D \in \mathcal{D}$ we say:
(i) q is a D-corner for π if $q-\alpha \notin \Gamma(\pi) \forall \alpha \in \Delta_{P}^{D}$;
(ii) q is a D-fundamental corner for π if it is a D-corner for π and $\chi_{q+\rho_{K}-\rho_{P}^{D}}$ is the infinitesimal character of π;
(iii) q is a fundamental corner for π if it is a D-fundamental corner for π for some $D \in \mathcal{D}$.

In [8] for the case of the groups $G=S U(n, 1)$ and $K=U(n)$ the following results were proved:

1. Every $\pi \in \widehat{G}^{0}$ has either one or two fundamental corners.
2. $\hat{G}^{0}=\left\{\pi \in \widehat{G}^{0} ; \pi\right.$ has exactly one fundamental corner $\}$.
3. For $\pi \in \hat{G}^{0}$ denote by $q(\pi)$ the unique fundamental corner of π. Then $\pi \mapsto q(\pi)$ is a bijection of \hat{G}^{0} onto \hat{K}.

In this paper we investigate the analogous notions for the $\operatorname{groups} \operatorname{Spin}(n, 1)$.

2 The groups $\operatorname{Spin}(n, 1)$

In the rest of the paper $G=\operatorname{Spin}(n, 1), n \geq 3$, is the connected and simply connected real Lie group with simple real Lie algebra

$$
\mathfrak{g}_{0}=\mathfrak{s o}(n, 1)=\left\{A \in \mathfrak{g l}(n+1, \mathbb{R}) ; A^{t}=-\Gamma A \Gamma\right\}, \quad \Gamma=\left[\begin{array}{cc}
I_{n} & 0 \\
0 & -1
\end{array}\right]
$$

i.e.

$$
\mathfrak{g}_{0}=\left\{\left[\begin{array}{cc}
B & a \\
a^{t} & 0
\end{array}\right] ; B \in \mathfrak{s o}(n), a \in M_{n, 1}(\mathbb{R})\right\}
$$

Here and in the rest of the paper we use the usual notation:

- $M_{m, n}(K)$ is the vector space of $m \times n$ matrices over a field K.
- $\mathfrak{g l}(n, K)$ denotes the Lie algebra $M_{n, n}(K)$ with $[A, B]=A B-B A$.
- $\mathrm{GL}(n, K)$ is the group of invertible matrices in $M_{n, n}(K)$.
- A^{t} is the transpose of a matrix A.
- $\mathfrak{s o}(n, K)=\left\{B \in \mathfrak{g l}(n, K) ; B^{t}=-B\right\}$.
- $\mathfrak{s o}(n)=\mathfrak{s o}(n, \mathbb{R})$.
- $\operatorname{SO}(n)=\left\{A \in \mathrm{GL}(n, \mathbb{R}) ; A^{-1}=A^{t}, \operatorname{det} A=1\right\}$.

We choose Cartan decomposition $\mathfrak{g}_{0}=\mathfrak{k}_{0} \oplus \mathfrak{p}_{0}$:

$$
\mathfrak{k}_{0}=\left\{\left[\begin{array}{cc}
B & 0 \\
0 & 0
\end{array}\right] ; B \in \mathfrak{s o}(n)\right\}, \quad \mathfrak{p}_{0}=\left\{\left[\begin{array}{cc}
0 & a \\
a^{t} & 0
\end{array}\right] ; a \in M_{n, 1}(\mathbb{R})\right\}
$$

The group $\operatorname{Spin}(n, 1)$ is double cover of the identity component $\operatorname{SO}(n, 1)_{0}$ of the Lie group $\mathrm{SO}(n, 1)=\left\{A \in \mathrm{GL}(n+1, \mathbb{R}) ; A^{-1}=\Gamma A^{t} \Gamma\right.$, $\operatorname{det} A=$ $1\}$. The maximal compact subgroup $K \subset G$ with Lie algebra \mathfrak{k}_{0} is the double cover $\operatorname{Spin}(n)$ of the group $\mathrm{SO}(n)$.

Now we choose Cartan subalgebras. $E_{p, q}$ will denote the $(n+1) \times(n+1)$ matrix with (p, q)-entry equal 1 and all the other entries 0 . Set

$$
\begin{array}{ll}
I_{p, q}=E_{p, q}-E_{q, p}, & 1 \leq p, q \leq n, \quad p \neq q ; \\
B_{p}=E_{p, n+1}+E_{n+1, p}, & 1 \leq p \leq n .
\end{array}
$$

Then $\left\{I_{p, q} ; 1 \leq q<p \leq n\right\}$ is a basis of $\mathfrak{k}_{0},\left\{B_{p} ; 1 \leq p \leq n\right\}$ is a basis of \mathfrak{p}_{0} and $\mathfrak{t}_{0}=\operatorname{span}_{\mathbb{R}}\left\{I_{2 p, 2 p-1} ; 1 \leq p \leq \frac{n}{2}\right\}$ is a Cartan subalgebra of \mathfrak{k}_{0}.

We consider separately two cases: n even and n odd.

$$
n \text { even, } n=2 k
$$

In this case \mathfrak{t}_{0} is also a Cartan subalgebra of \mathfrak{g}_{0}. Set

$$
H_{p}=-i I_{2 p, 2 p-1}, \quad 1 \leq p \leq k .
$$

Dual space \mathfrak{t}^{*} identifies with \mathbb{C}^{k} through this basis of \mathfrak{t} :

$$
\mathfrak{t}^{*} \ni \lambda=\left(\lambda\left(H_{1}\right), \ldots, \lambda\left(H_{k}\right)\right) \in \mathbb{C}^{k}
$$

Denoting by $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ the canonical basis of $\mathbb{C}^{k}=\mathfrak{t}^{*}$ the root system of the pair $(\mathfrak{g}, \mathfrak{t})$ is

$$
\Delta=\Delta(\mathfrak{g}, \mathfrak{t})=\left\{ \pm \alpha_{p} \pm \alpha_{q} ; 1 \leq p, q \leq k, p \neq q\right\} \cup\left\{ \pm \alpha_{p} ; 1 \leq p \leq k\right\} .
$$

The Weyl group W of Δ consists of all permutations of the coordinates combined with multiplications of some coordinates with -1 .

The root system Δ_{K} of the pair $(\mathfrak{k}, \mathfrak{t})$ is $\left\{ \pm \alpha_{p} \pm \alpha_{q} ; p \neq q\right\}$. We choose positive roots $\Delta_{K}^{+}=\left\{\alpha_{p} \pm \alpha_{q} ; 1 \leq p<q \leq k\right\}$. The unitary dual \hat{K} of $K=\operatorname{Spin}(2 k)$ will be parametrized by identifying with the corresponding highest weights. Thus

$$
\begin{gathered}
\hat{K}=\left\{\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{Z}^{k} \cup\left(\frac{1}{2}+\mathbb{Z}\right)^{k} ; m_{1} \geq m_{2} \geq \cdots \geq m_{k-1} \geq\left|m_{k}\right|\right\} . \\
n \text { odd, } n=2 k+1
\end{gathered}
$$

Now \mathfrak{t}_{0} is not a Cartan subalgebra of \mathfrak{g}_{0}. Set

$$
H=B_{n}=B_{2 k+1}=E_{2 k+1,2 k+2}+E_{2 k+2,2 k+1}, \quad \mathfrak{a}_{0}=\mathbb{R} H, \quad \mathfrak{h}_{0}=\mathfrak{t}_{0} \dot{+} \mathfrak{a}_{0} .
$$

Then \mathfrak{h}_{0} is a Cartan subalgebra of \mathfrak{g}_{0} and all the other Cartan subalgebras of \mathfrak{g}_{0} are $\operatorname{Int}\left(\mathfrak{g}_{0}\right)$-conjugated with \mathfrak{h}_{0}. The ordered basis $\left(H_{1}, \ldots, H_{k}, H\right)$ of \mathfrak{h} is used for the identification of $\mathfrak{h}^{*}=\mathbb{C}^{k+1}$:

$$
\mathfrak{h}^{*} \ni \lambda=\left(\lambda\left(H_{1}\right), \ldots, \lambda\left(H_{k}\right), \lambda(H)\right) \in \mathbb{C}^{k+1}
$$

\mathfrak{t}^{*} and \mathfrak{a}^{*} are identified with subspaces of $\mathfrak{h}^{*}: \mathfrak{t}^{*}=\left\{\lambda \in \mathfrak{h}^{*} ;\left.\lambda\right|_{\mathfrak{a}}=0\right\}$ and $\mathfrak{a}^{*}=\left\{\lambda \in \mathfrak{h}^{*} ;\left.\lambda\right|_{\mathfrak{t}}=0\right\}$. So $\mathfrak{h}^{*}=\mathfrak{t}^{*} \dot{+} \mathfrak{a}^{*}$.

Let $\left\{\alpha_{1}, \ldots, \alpha_{k+1}\right\}$ be the canonical basis of \mathbb{C}^{k+1}. The root system of the pair $(\mathfrak{g}, \mathfrak{h})$ is $\Delta=\Delta(\mathfrak{g}, \mathfrak{h})=\left\{ \pm \alpha_{p} \pm \alpha_{q} ; 1 \leq p, q \leq k+1, p \neq q\right\}$. The Weyl group $W=W(\mathfrak{g}, \mathfrak{h})$ consists of all permutations of coordinates combined with multiplying even number of coordinates with -1 . The root system of the pair $(\mathfrak{k}, \mathfrak{t})$ is $\Delta_{K}=\Delta(\mathfrak{k}, \mathfrak{t})=\left\{ \pm \alpha_{p} \pm \alpha_{q} ; 1 \leq p, q \leq\right.$ $k, p \neq q\} \cup\left\{ \pm \alpha_{p} ; 1 \leq p \leq k\right\}$. Choose positive roots $\Delta_{K}^{+}=\left\{\alpha_{p} \pm\right.$ $\left.\alpha_{q} ; 1 \leq p<q \leq k\right\} \cup\left\{\alpha_{p} ; 1 \leq p \leq k\right\}$. The dual \hat{K} is again identified with the highest weights:

$$
\hat{K}=\left\{q=\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{Z}_{+}^{k} \cup\left(\frac{1}{2}+\mathbb{Z}_{+}\right)^{k} ; m_{1} \geq m_{2} \geq \cdots \geq m_{k}\right\}
$$

Elementary representations of the groups $\operatorname{Spin}(n, 1)$

Regardless the parity of n we put $H=B_{n}=E_{n, n+1}+E_{n+1, n}, \mathfrak{a}_{0}=\mathbb{R} H$. As we already said, if n is odd, $n=2 k+1$, then $\mathfrak{h}_{0}=\mathfrak{t}_{0} \dot{+} \mathfrak{a}_{0}$ is a Cartan subalgebra of \mathfrak{g}_{0} and all the other Cartan subalgebras are $\operatorname{Int}\left(\mathfrak{g}_{0}\right)$-conjugated to \mathfrak{h}_{0}. If $n=2 k \mathfrak{g}_{0}$ has two $\operatorname{Int}\left(\mathfrak{g}_{0}\right)$-conjugacy classes of Cartan subalgebras. Their representatives are \mathfrak{t}_{0} and $\mathfrak{h}_{0}=$ $\operatorname{span}_{\mathbb{R}}\left\{i H_{1}, \ldots, i H_{k-1}, H\right\} . \mathfrak{t}$ and \mathfrak{h} are of course $\operatorname{Int}(\mathfrak{g})$-conjugated. Explicitly, the matrix

$$
A=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} P_{k} & \frac{1}{\sqrt{2}} P_{k} & -i e_{k} \\
-\frac{1}{\sqrt{2}} Q_{k} & \frac{1}{\sqrt{2}} I_{k} & 0_{k} \\
-\frac{i}{\sqrt{2}} e_{k}^{t} & \frac{i}{\sqrt{2}} e_{k}^{t} & 0
\end{array}\right] \in \mathrm{SO}(2 k, 1, \mathbb{C})
$$

where $P_{k}=I_{k}-E_{k, k}=\operatorname{diag}(1, \ldots, 1,0)$,

$$
Q_{k}=I_{k}-2 E_{k, k}=\operatorname{diag}(1, \ldots, 1,-1)
$$

$e_{k} \in M_{k, 1}(\mathbb{C})$ is given by $e_{k}^{t}=[0 \cdots 01]$ and 0_{k} is the zero matrix in $M_{k, 1}(\mathbb{C})$, has the properties $A H_{j} A^{-1}=H_{j}, 1 \leq j \leq k-1$, and $A H_{k} A^{-1}=H$; thus, $A \mathfrak{t} A^{-1}=\mathfrak{h}$ and the parameters from $\mathbb{C}^{k}=\mathfrak{h}^{*}=\mathfrak{t}^{*}$ of the infinitesimal characters obtained through the two Harish-Chandra isomorphisms $\mathfrak{Z}(\mathfrak{g}) \longrightarrow \mathcal{P}\left(\mathfrak{h}^{*}\right)^{W}$ and $\mathfrak{Z}(\mathfrak{g}) \longrightarrow \mathcal{P}\left(\mathfrak{t}^{*}\right)^{W}$ coincide if the identifications of \mathfrak{h}^{*} and \mathfrak{t}^{*} with \mathbb{C}^{k} are done through the two ordered bases $\left(H_{1}, \ldots, H_{k-1}, H\right)$ of \mathfrak{h} and $\left(H_{1}, \ldots, H_{k-1}, H_{k}\right)$ of \mathfrak{t}.

For both cases, n even and n odd, \mathfrak{m}_{0} is the subalgebra of all matrices in \mathfrak{g}_{0} with the last two rows and columns 0 . The subgroup M is isomorphic to $\operatorname{Spin}(n-1)$. A Cartan subalgebra of \mathfrak{m}_{0} is

$$
\mathfrak{d}_{0}=\mathfrak{t}_{0} \cap \mathfrak{m}_{0}=\operatorname{span}_{\mathbb{R}}\left\{i H_{1}, \ldots, i H_{k-1}\right\}, \quad k=\left\lfloor\frac{n}{2}\right\rfloor .
$$

The elements of \hat{M} are identified with their highest weights. For n even, $n=2 k$, we have

$$
\hat{M}=\left\{\left(n_{1}, \ldots, n_{k-1}\right) \in \mathbb{Z}_{+}^{k-1} \cup\left(\frac{1}{2}+\mathbb{Z}_{+}\right)^{k-1} ; n_{1} \geq n_{2} \geq \cdots \geq n_{k-1} \geq 0\right\}
$$

and for n odd, $n=2 k+1$, we have

$$
\hat{M}=\left\{\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{Z}^{k} \cup\left(\frac{1}{2}+\mathbb{Z}\right)^{k} ; n_{1} \geq n_{2} \geq \cdots \geq n_{k-1} \geq\left|n_{k}\right|\right\}
$$

The branching rules for the restriction of representations of K to the subgroup M are the following:

If n is even, $n=2 k$, we have

$$
\left.\left(m_{1}, \ldots, m_{k}\right)\right|_{M}=\bigoplus_{\left(n_{1}, \ldots, n_{k-1}\right) \prec\left(m_{1}, \ldots, m_{k}\right)}\left(n_{1}, \ldots, n_{k-1}\right) ;
$$

here the symbol $\left(n_{1}, \ldots, n_{k-1}\right) \prec\left(m_{1}, \ldots, m_{k}\right)$ means that all m_{i} and n_{j} are either in \mathbb{Z} or in $\frac{1}{2}+\mathbb{Z}$ and that

$$
m_{1} \geq n_{1} \geq m_{2} \geq n_{2} \cdots \geq m_{k-1} \geq n_{k-1} \geq\left|m_{k}\right|
$$

If n is odd, $n=2 k+1$, we have

$$
\left.\left(m_{1}, \ldots, m_{k}\right)\right|_{M}=\bigoplus_{\left(n_{1}, \ldots, n_{k}\right) \prec\left(m_{1}, \ldots, m_{k}\right)}\left(n_{1}, \ldots, n_{k}\right) ;
$$

now the symbol $\left(n_{1}, \ldots, n_{k}\right) \prec\left(m_{1}, \ldots, m_{k}\right)$ means that all m_{i} and n_{j} are either in \mathbb{Z} or in $\frac{1}{2}+\mathbb{Z}$ and that

$$
m_{1} \geq n_{1} \geq m_{2} \geq n_{2} \cdots \geq m_{k-1} \geq n_{k-1} \geq m_{k} \geq\left|n_{k}\right|
$$

The restriction $\left.\pi^{\sigma, \nu}\right|_{K}$ is the representation of K induced by the representation σ of the subgroup M, thus it does not depend on ν. By Frobenius Reciprocity Theorem the multiplicity of $q \in \hat{K}$ in $\left.\pi^{\sigma, \nu}\right|_{K}$ is equal to the multiplicity of σ in $\left.q\right|_{M}$. Thus

$$
\left.\pi^{\sigma, \nu}\right|_{K}=\bigoplus_{\substack{q \in \hat{K} \\ \sigma \prec q}} q .
$$

Hence, the multiplicity of every $q=\left(m_{1}, \ldots, m_{k}\right) \in \hat{K}$ in the elementary representation $\pi^{\sigma, \nu}$ is either 1 or 0 and the $K-\operatorname{spectrum} \Gamma\left(\pi^{\sigma, \nu}\right)$ consists of all $q=\left(m_{1}, \ldots, m_{k}\right) \in \hat{K} \cap\left(n_{1}+\mathbb{Z}\right)^{k}$ such that
$m_{1} \geq n_{1} \geq m_{2} \geq n_{2} \geq \cdots \geq m_{k-1} \geq n_{k-1} \geq \begin{cases}\left|m_{k}\right| & \text { if } n=2 k, \\ m_{k} \geq\left|n_{k}\right| & \text { if } n=2 k+1 .\end{cases}$

3 Representations of $\operatorname{Spin}(2 k, 1)$

In this section we first write down in our notation the known results on elementary representations and its irreducible subquotients for the groups $\operatorname{Spin}(2 k, 1)$ (see [1], [2], 3], 4], [5], 6], 9], 10]). For $\sigma=\left(n_{1}, \ldots, n_{k-1}\right)$ in $\hat{M} \subseteq \mathbb{R}^{k-1}=i \mathfrak{d}_{0}^{*}$ and for $\nu \in \mathbb{C}=\mathfrak{a}^{*}$ the elementary representation $\pi^{\sigma, \nu}$ is irreducible if and only if either $\nu \notin \frac{1}{2}+n_{1}+\mathbb{Z}$ or

$$
\nu \in\left\{ \pm\left(n_{k-1}+\frac{1}{2}\right), \pm\left(n_{k-2}+\frac{3}{2}\right), \ldots, \pm\left(n_{2}+k-\frac{5}{2}\right), \pm\left(n_{1}+k-\frac{3}{2}\right)\right\}
$$

If $\pi^{\sigma, \nu}$ is reducible it has either two or three irreducible subquotients. If it has two, we will denote them by $\tau^{\sigma, \nu}$ and $\omega^{\sigma, \nu}$; an exception is the case of nonintegral n_{j} and $\nu=0$, when we denote them by $\omega^{\sigma, 0, \pm}$. If $\pi^{\sigma, \nu}$ has three irreducible subquotients, we will denote them by $\tau^{\sigma, \nu}$ and $\omega^{\sigma, \nu, \pm}$. Their K-spectra are as follows:
$\left(a_{1}\right) n_{j} \in \mathbb{Z}_{+}$and $\nu \in\left\{ \pm \frac{1}{2}, \pm \frac{3}{2}, \ldots, \pm\left(n_{k-1}-\frac{1}{2}\right)\right\}$ (this is possible only if $n_{k-1} \geq 1$):

$$
\begin{array}{ll}
\Gamma\left(\tau^{\sigma, \nu}\right): & m_{1} \geq n_{1} \geq \cdots \geq m_{k-1} \geq n_{k-1},\left|m_{k}\right| \leq|\nu|-\frac{1}{2} \\
\Gamma\left(\omega^{\sigma, \nu, \pm}\right): & m_{1} \geq n_{1} \geq \cdots \geq m_{k-1} \geq n_{k-1} \geq \pm m_{k} \geq|\nu|+\frac{1}{2}
\end{array}
$$

$\left(a_{2}\right) n_{j} \in\left(\frac{1}{2}+\mathbb{Z}_{+}\right)$and $\nu \in\left\{ \pm 1, \ldots, \pm\left(n_{k-1}-\frac{1}{2}\right)\right\}$ (this is possible only if $\left.n_{k-1} \geq \frac{3}{2}\right)$:

$$
\begin{array}{ll}
\Gamma\left(\tau^{\sigma, \nu}\right): & m_{1} \geq n_{1} \geq \cdots \geq m_{k-1} \geq n_{k-1},\left|m_{k}\right| \leq|\nu|-\frac{1}{2} \\
\Gamma\left(\omega^{\sigma, \nu, \pm}\right): & m_{1} \geq n_{1} \geq \cdots \geq m_{k-1} \geq n_{k-1} \geq \pm m_{k} \geq|\nu|+\frac{1}{2}
\end{array}
$$

$\left(a_{3}\right) n_{j} \in\left(\frac{1}{2}+\mathbb{Z}_{+}\right)$and $\nu=0$:

$$
\Gamma\left(\omega^{\sigma, 0, \pm}\right): \quad m_{1} \geq n_{1} \geq \cdots \geq m_{k-1} \geq n_{k-1} \geq \pm m_{k} \geq \frac{1}{2}
$$

(b) If $n_{j-1}>n_{j}$ for some $j \in\{2, \ldots, k-1\}$ and if

$$
\begin{aligned}
\nu \in\left\{ \pm\left(n_{j}+k-j+\frac{1}{2}\right),\right. & \pm\left(n_{j}+k-j+\frac{3}{2}\right), \ldots \\
& \left. \pm\left(n_{j-1}+k-j-\frac{1}{2}\right)\right\}
\end{aligned}
$$

then:

$$
\begin{array}{ll}
\Gamma\left(\tau^{\sigma, \nu}\right): & m_{1} \geq n_{1} \geq \cdots \geq m_{j-1} \geq n_{j-1} \\
& |\nu|-k+j-\frac{1}{2} \geq m_{j} \geq n_{j} \geq \cdots \geq n_{k-1} \geq\left|m_{k}\right| \\
& \Gamma\left(\omega^{\sigma, \nu}\right): \\
& m_{1} \geq n_{1} \geq \cdots \geq n_{j-1} \geq m_{j} \geq|\nu|-k+j+\frac{1}{2} \\
& n_{j} \geq m_{j+1} \geq \cdots \geq n_{k-1} \geq\left|m_{k}\right|
\end{array}
$$

(c) $\nu \in\left\{ \pm\left(n_{1}+k-\frac{1}{2}\right), \pm\left(n_{1}+k+\frac{1}{2}\right), \pm\left(n_{1}+k+\frac{3}{2}\right), \ldots\right\}:$

$$
\begin{aligned}
\Gamma\left(\tau^{\sigma, \nu}\right): & |\nu|-k+\frac{1}{2} \geq m_{1} \geq n_{1} \geq \cdots \geq m_{k-1} \geq n_{k-1} \geq\left|m_{k}\right| \\
\Gamma\left(\omega^{\sigma, \nu}\right): & m_{1} \geq|\nu|-k+\frac{3}{2}, n_{1} \geq m_{2} \geq \cdots \\
& \cdots \geq m_{k-1} \geq n_{k-1} \geq\left|m_{k}\right|
\end{aligned}
$$

Irreducible elementary representation $\pi^{\sigma, \nu}$ is unitary if and only if either $\nu \in i \mathbb{R}$ (so called unitary principal series) or $\nu \in\langle-\nu(\sigma), \nu(\sigma)\rangle$, where

$$
\nu(\sigma)=\min \left\{\nu \geq 0 ; \pi^{\sigma, \nu} \text { is reducible }\right\}
$$

(so caled complementary series). Notice that for nonintegral n_{j} 's $\pi^{\sigma, 0}$ is reducible, thus $\nu(\sigma)=0$ and the complementary series is empty. In the case of integral n_{j} 's we have the following possibilities:
(a) If $n_{k-1} \geq 1$, then $\nu(\sigma)=\frac{1}{2}$. The reducible elementary representation $\pi^{\sigma, \frac{1}{2}}$ is of the type (a1).
(b) If $n_{k-1}=0$ and $n_{1} \geq 1$, let $j \in\{2, \ldots, k-1\}$ be such that $n_{k-1}=\cdots=n_{j}=0<n_{j-1}$. Then $\nu(\sigma)=k-j+\frac{1}{2}$. The reducible elementary representation $\pi^{\sigma, k-j+\frac{1}{2}}$ is of the type ($b j$).
(c) If σ is trivial, i.e. $n_{1}=\cdots=n_{k-1}=0$, then $\nu(\sigma)=k-\frac{1}{2}$. The reducible elementary representation $\pi^{\sigma, k-\frac{1}{2}}$ is of the type (c).

Among irreducible subquotients of reducible elementary representations the unitary ones are $\omega^{\sigma, \nu, \pm}, \tau^{\sigma, \nu(\sigma)}$ and $\omega^{\sigma, \nu(\sigma)}$.

The infinitesimal character of $\pi^{\sigma, \nu}$ (and of its irreducible subquotients) is $\chi_{\Lambda(\sigma, \nu)}$, where $\Lambda(\sigma, \nu) \in \mathfrak{h}^{*}$ is given by

$$
\Lambda(\sigma, \nu)=\left(n_{1}+k-\frac{3}{2}, n_{2}+k-\frac{5}{2}, \ldots, n_{k-1}+\frac{1}{2}, \nu\right)
$$

As we pointed out, if \mathfrak{t}^{*} is identified with \mathbb{C}^{k} through the basis $\left(H_{1}, \ldots, H_{k}\right)$ of \mathfrak{t}, the same parameters determine this infinitesimal character with respect to the Harish-Chandra isomorphism $\mathfrak{Z}(\mathfrak{g}) \longrightarrow \mathcal{P}\left(\mathfrak{t}^{*}\right)^{W(\mathfrak{g}, \mathfrak{t})}$.

The W_{K}-chamber in $\mathbb{R}^{k}=i \epsilon_{0}^{*}$ corresponding to chosen positive roots Δ_{K}^{+}is

$$
C=\left\{\lambda \in \mathbb{R}^{k} ; \lambda_{1}>\lambda_{2}>\ldots>\lambda_{k-1}>\left|\lambda_{k}\right|>0\right\}
$$

The set \mathcal{D} of W-chambers contained in C consists of two elements:

$$
D_{ \pm}=\left\{\lambda \in \mathbb{R}^{k} ; \lambda_{1}>\lambda_{2}>\cdots>\lambda_{k-1}> \pm \lambda_{k}>0\right\}
$$

The closure \bar{D}_{+}is fundamental domain for the action of W on \mathbb{R}^{k}, i.e. each W-orbit in \mathbb{R}^{k} intersects with \bar{D}_{+}in one point. We saw that the reducibility criteria imply that $\Lambda(\sigma, \nu) \in \mathbb{R}^{k}$ whenever $\pi^{\sigma, \nu}$ is reducible. We denote by $\lambda(\sigma, \nu)$ the unique point in the intersection of $W \Lambda(\sigma, \nu)$ with \bar{D}_{+}. In the following theorem (proved with all details in [7) we can suppose without loss of generality that $\nu \geq 0$, since $\pi^{\sigma, \nu}$ and $\pi^{\sigma,-\nu}$ have the same irreducible subquotients.

Theorem 1. (i) $\pi^{\sigma, \nu}$ is reducible if and only if its infinitesimal character is χ_{λ} for some $\lambda \in \Lambda$, where

$$
\Lambda=\left\{\lambda \in \mathbb{Z}_{+}^{k} \cup\left(\frac{1}{2}+\mathbb{Z}_{+}\right)^{k} ; \lambda_{1}>\lambda_{2}>\cdots>\lambda_{k-1}>\lambda_{k} \geq 0\right\}
$$

We write Λ as the disjoint union $\Lambda^{*} \cup \Lambda^{0}$, where

$$
\begin{gathered}
\Lambda^{*}=\left\{\lambda \in \mathbb{Z}_{+}^{k} \cup\left(\frac{1}{2}+\mathbb{Z}_{+}\right)^{k} ; \lambda_{1}>\lambda_{2}>\cdots>\lambda_{k-1}>\lambda_{k}>0\right\} \\
\Lambda^{0}=\left\{\lambda \in \mathbb{Z}_{+}^{k} ; \lambda_{1}>\lambda_{2}>\cdots>\lambda_{k-1}>0, \lambda_{k}=0\right\}
\end{gathered}
$$

(ii) For $\lambda \in \Lambda^{*}$ there exist k ordered pairs $(\sigma, \nu), \sigma \in \hat{M}, \nu \geq 0$, such that χ_{λ} is the infinitesimal character of $\pi^{\sigma, \nu}$. These ordered pairs are $\left(\sigma_{j}, \nu_{j}\right), 1 \leq j \leq k$, where $\nu_{j}=\lambda_{j}$ and:

$$
\begin{aligned}
\sigma_{1}= & \left(\lambda_{2}-k+\frac{3}{2}, \ldots, \lambda_{s+1}-k+s+\frac{1}{2}, \ldots, \lambda_{k}-\frac{1}{2}\right) \\
\sigma_{j}= & \left(\lambda_{1}-k+\frac{3}{2}, \ldots, \lambda_{j-1}-k+j-\frac{1}{2}, \lambda_{j+1}-k+j+\frac{1}{2}, \ldots, \lambda_{k}-\frac{1}{2}\right) \\
& 2 \leq j \leq k-1 \\
\sigma_{k}= & \left(\lambda_{1}-k+\frac{3}{2}, \lambda_{2}-k+\frac{5}{2}, \ldots, \lambda_{k-1}-\frac{1}{2}\right)
\end{aligned}
$$

(iii) For $\lambda \in \Lambda^{0}$, the ordered pair $(\sigma, \nu), \sigma \in \hat{M}, \nu \in \mathbb{R}$, such that χ_{λ} is the infinitesimal character of $\pi^{\sigma, \nu}$, is unique:

$$
\sigma=\left(\lambda_{1}-k+\frac{3}{2}, \lambda_{2}-k+\frac{5}{2}, \ldots, \lambda_{k-1}-\frac{1}{2}\right), \nu=0
$$

Fix now $\lambda \in \Lambda^{*}$. There are altogether $k+2$ mutually infinitesimally inequivalent irreducible subquotients of the reducible elementary representations $\pi^{\sigma_{1}, \nu_{1}}, \ldots, \pi^{\sigma_{k}, \lambda_{k}}$ which we denote by $\tau_{1}^{\lambda}, \ldots, \tau_{k}^{\lambda}, \omega_{+}^{\lambda}, \omega_{-}^{\lambda}$: $\tau_{j}^{\lambda}=\tau^{\sigma_{j}, \nu_{j}}, \omega_{ \pm}^{\lambda}=\omega^{\sigma_{k}, \nu_{k}, \pm}$. Note that $\omega^{\sigma_{j}, \nu_{j}} \cong \tau_{j+1}^{\lambda}$ for $1 \leq j \leq k-1$.

The K-spectra of these irreducible representations consist of all $q=\left(m_{1}, \ldots, m_{k}\right)$ in $\hat{K} \cap\left(\lambda_{1}+\frac{1}{2}+\mathbb{Z}\right)^{k}$ that satisfy:

$$
\begin{array}{ll}
\Gamma\left(\tau_{1}^{\lambda}\right): & \lambda_{1}-k+\frac{1}{2} \geq m_{1} \geq \lambda_{2}-k+\frac{3}{2} \geq \cdots \geq m_{k-1} \geq \lambda_{k}-\frac{1}{2} \geq\left|m_{k}\right|, \\
& \vdots \\
\Gamma\left(\tau_{j}^{\lambda}\right): & m_{1} \geq \lambda_{1}-k+\frac{3}{2} \geq m_{2} \geq \cdots \geq m_{j-1} \geq \lambda_{j-1}-k+j-\frac{1}{2} \\
& \lambda_{j}-k+j-\frac{1}{2} \geq m_{j} \geq \cdots \geq m_{k-1} \geq \lambda_{k}-\frac{1}{2} \geq\left|m_{k}\right| \\
& \vdots \\
\Gamma\left(\tau_{k}^{\lambda}\right): & m_{1} \geq \lambda_{1}-k+\frac{3}{2} \geq m_{2} \geq \lambda_{2}-k+\frac{5}{2} \geq \cdots m_{k-1} \geq \lambda_{k-1}-\frac{1}{2} \\
& \lambda_{k}-\frac{1}{2} \geq\left|m_{k}\right|, \\
\Gamma\left(\omega_{ \pm}^{\lambda}\right): & m_{1} \geq \lambda_{1}-k+\frac{3}{2} \geq \cdots \geq m_{k-1} \geq \lambda_{k-1}-\frac{1}{2} \geq \pm m_{k} \geq \lambda_{k}+\frac{1}{2}
\end{array}
$$

It is obvious that each of these representations π has one D_{+}-corner and one D_{-}corner; we denote them by $q_{ \pm}(\pi)$. The list is:

$$
\begin{aligned}
q_{ \pm}\left(\tau_{1}^{\lambda}\right)= & \left(\lambda_{2}-k+\frac{3}{2}, \ldots, \lambda_{k-1}-\frac{3}{2}, \lambda_{k}-\frac{1}{2}, \mp\left(\lambda_{k}-\frac{1}{2}\right)\right), \\
q_{ \pm}\left(\tau_{j}^{\lambda}\right)= & \left(\lambda_{1}-k+\frac{3}{2}, \ldots, \lambda_{j-1}-k+j-\frac{1}{2},\right. \\
& \left.\lambda_{j+1}-k+j+\frac{1}{2}, \ldots, \lambda_{k}-\frac{1}{2}, \mp\left(\lambda_{k}-\frac{1}{2}\right)\right), \\
q_{ \pm}\left(\tau_{k}^{\lambda}\right)= & \left(\lambda_{1}-k+\frac{3}{2}, \lambda_{2}-k+\frac{5}{2}, \ldots, \lambda_{k-1}-\frac{1}{2}, \mp\left(\lambda_{k}-\frac{1}{2}\right)\right), \\
q_{ \pm}\left(\omega_{ \pm}^{\lambda}\right)= & \left(\lambda_{1}-k+\frac{3}{2}, \lambda_{2}-k+\frac{5}{2}, \ldots, \lambda_{k-1}-\frac{1}{2}, \pm\left(\lambda_{k}+\frac{1}{2}\right)\right), \\
q_{ \pm}\left(\omega_{\mp}^{\lambda}\right)= & \left(\lambda_{1}-k+\frac{3}{2}, \lambda_{2}-k+\frac{5}{2}, \ldots, \lambda_{k-1}-\frac{1}{2}, \mp\left(\lambda_{k-1}-\frac{1}{2}\right)\right) .
\end{aligned}
$$

We check directly that among them the fundamental ones are $q_{ \pm}\left(\tau_{k}^{\lambda}\right)$ and $q_{ \pm}\left(\omega_{ \pm}^{\lambda}\right)$ while the others $q_{ \pm}\left(\tau_{j}^{\lambda}\right), j<k, q_{ \pm}\left(\omega_{\mp}^{\lambda}\right)$, are not fundamental.

Notice that finite dimensional τ_{1}^{λ} is not unitary and $q_{+}\left(\tau_{1}^{\lambda}\right) \neq q_{-}\left(\tau_{1}^{\lambda}\right)$ unless it is the trivial 1 -dimensional representation
$\left(\lambda=\left(k-\frac{1}{2}, k-\frac{3}{2}, \ldots, \frac{1}{2}\right)\right)$ when $q_{+}\left(\tau_{1}^{\lambda}\right)=q_{-}\left(\tau_{1}^{\lambda}\right)=(0, \ldots, 0)$. Next, τ_{j}^{λ} for $2 \leq j \leq k$ is not unitary and $q_{+}\left(\tau_{j}^{\lambda}\right) \neq q_{-}\left(t_{j}^{\lambda}\right)$. Finally, ω_{+}^{λ} and ω_{-}^{λ} are unitary (these are the discrete series representations) and each of them has one fundamental corner, $q_{+}\left(\omega_{+}^{\lambda}\right)$ and $q_{-}\left(\omega_{-}^{\lambda}\right)$; the other two $q_{-}\left(\omega_{+}^{\lambda}\right)$ and $q_{+}\left(\omega_{-}^{\lambda}\right)$ are not fundamental.

We consider now the case $\lambda \in \Lambda^{0}$. The elementary representation $\pi^{\sigma, 0}$ is unitary and it is direct sum of two unitary irreducible representations ω_{+}^{λ} and ω_{-}^{λ}. Their K-spectra consist of all $q=\left(m_{1}, \ldots, m_{k}\right) \in \hat{K} \cap\left(\frac{1}{2}+\mathbb{Z}\right)^{k}$ that satisfy

$$
\Gamma\left(\omega_{ \pm}^{\lambda}\right): \quad m_{1} \geq \lambda_{1}-k+\frac{3}{2} \geq \cdots \geq m_{k-1} \geq \lambda_{k-1}-\frac{1}{2} \geq \pm m_{k} \geq \frac{1}{2}
$$

Again each of these representations have one D_{+}- corner and one D_{-}-corner:

$$
\begin{aligned}
& q_{ \pm}\left(\omega_{ \pm}^{\lambda}\right)=\left(\lambda_{1}-k+\frac{3}{2}, \lambda_{2}-k+\frac{5}{2}, \ldots, \lambda_{k-1}-\frac{1}{2}, \pm \frac{1}{2}\right) \\
& q_{ \pm}\left(\omega_{\mp}^{\lambda}\right)=\left(\lambda_{1}-k+\frac{3}{2}, \lambda_{2}-k+\frac{5}{2}, \ldots, \lambda_{k-1}-\frac{1}{2}, \mp\left(\lambda_{k-1}-\frac{1}{2}\right)\right) .
\end{aligned}
$$

We find that again each of these unitary representation has one fundamental corner $\left(q_{+}\left(\omega_{+}^{\lambda}\right)\right.$, resp. $\left.q_{-}\left(\omega_{-}^{\lambda}\right)\right)$, and the other corner is not fundamental.

To summarize, we see that $\pi \in \widehat{G}^{0}$ with exactly one fundamental corner is unitary; its fundamental corner we denote by $q(\pi)$. For all the others
$\pi \in \hat{G}^{0}$ one has $q_{1}(\pi)=q_{2}(\pi)$ and we denote by $q(\pi)$ this unique corner of π.

Theorem 2. $\pi \mapsto q(\pi)$ is a bijection of \hat{G}^{0} onto \hat{K}.
Detailed proof can be find in 7.
Consider now minimal K-types in the sense of Vogan: we say that $q \in \hat{K}$ is a minimal K-type of the representation π if $q \in \Gamma(\pi)$ and

$$
\left\|q+2 \rho_{K}\right\|=\min \left\{\left\|q^{\prime}+2 \rho_{K}\right\| ; q^{\prime} \in \Gamma(\pi)\right\}
$$

For $q \in \hat{K}$ we have
$\left\|q+2 \rho_{K}\right\|^{2}=\left(m_{1}+2 k-2\right)^{2}+\left(m_{2}+2 k-4\right)^{2}+\cdots+\left(m_{k-1}+2\right)^{2}+m_{k}^{2}$ and so we find:

If $\lambda \in \Lambda \cap\left(\frac{1}{2}+\mathbb{Z}\right)^{k}$, i.e. $\lambda \in \Lambda^{*}$ and $\Gamma\left(\tau_{j}^{\lambda}\right) \subseteq \mathbb{Z}^{k}$, the representation τ_{j}^{λ} has unique minimal K-type which we denote by $q^{V}\left(\tau_{j}^{\lambda}\right)$:

$$
\begin{aligned}
q^{V}\left(\tau_{1}^{\lambda}\right)= & \left(\lambda_{2}-k+\frac{3}{2}, \lambda_{3}-k+\frac{5}{2}, \ldots, \lambda_{k}-\frac{1}{2}, 0\right) \\
q^{V}\left(\tau_{j}^{\lambda}\right)= & \left(\lambda_{1}-k+\frac{3}{2}, \ldots, \lambda_{j-1}-k+j-\frac{1}{2}\right. \\
& \left.\lambda_{j+1}-k+j+\frac{1}{2}, \ldots, \lambda_{k}-\frac{1}{2}, 0\right), \quad 2 \leq j \leq k-1 \\
q^{V}\left(\tau_{k}^{\lambda}\right)= & \left(\lambda_{1}-k+\frac{3}{2}, \lambda_{2}-k+\frac{5}{2}, \ldots, \lambda_{k-1}-\frac{1}{2}, 0\right)
\end{aligned}
$$

If $\lambda \in \Lambda \cap \mathbb{Z}^{k}$, i.e. $\Gamma\left(\tau_{j}^{\lambda}\right) \subseteq\left(\frac{1}{2}+\mathbb{Z}\right)^{k}$, the representation τ_{j}^{λ} has two minimal K-types $q_{+}^{V}\left(\tau_{j}^{\lambda}\right)$ and $q_{-}^{V}\left(\tau_{j}^{\lambda}\right)$:

$$
\begin{aligned}
q_{ \pm}^{V}\left(\tau_{1}^{\lambda}\right)= & \left(\lambda_{2}-k+\frac{3}{2}, \lambda_{3}-k+\frac{5}{2}, \ldots, \lambda_{k}-\frac{1}{2}, \pm \frac{1}{2}\right) \\
q_{ \pm}^{V}\left(\tau_{j}^{\lambda}\right)= & \left(\lambda_{1}-k+\frac{3}{2}, \ldots, \lambda_{j-1}-k+j-\frac{1}{2}\right. \\
& \left.\lambda_{j+1}-k+j+\frac{1}{2}, \ldots, \lambda_{k}-\frac{1}{2}, \pm \frac{1}{2}\right), \quad 2 \leq j \leq k-1 \\
q_{ \pm}^{V}\left(\tau_{k}^{\lambda}\right)= & \left(\lambda_{1}-k+\frac{3}{2}, \lambda_{2}-k+\frac{5}{2}, \ldots, \lambda_{k-1}-\frac{1}{2}, \pm \frac{1}{2}\right) .
\end{aligned}
$$

Finally, for every $\lambda \in \Lambda$ the representation $\omega_{ \pm}^{\lambda}$ has unique minimal K-type:

$$
q^{V}\left(\omega_{ \pm}^{\lambda}\right)=\left(\lambda_{1}-k+\frac{3}{2}, \lambda_{2}-k+\frac{5}{2}, \ldots, \lambda_{k-1}-\frac{1}{2}, \pm\left(\lambda_{k}+\frac{1}{2}\right)\right)
$$

So we see that if $\pi \in \widehat{G}^{0}$ has two minimal K-types it is not unitary. Further, every $\pi \in \hat{G}^{0}$ has unique minimal K-type $q^{V}(\pi)$ and it coincides
with $q(\pi)$. But there exist nonunitary representations in \widehat{G}^{0} that have unique minimal K-type: this property have all τ_{j}^{λ} for $\lambda \in \Lambda \cap\left(\frac{1}{2}+\mathbb{Z}_{+}\right)^{k}$ that are not subquotients of the ends of complementary series. In other words, unitarity of a representation $\pi \in \widehat{G}^{0}$ is not completely characterized by having unique minimal K-type.

4 Representations of $\operatorname{Spin}(2 k+1,1)$

For $\sigma=\left(n_{1}, \ldots, n_{k}\right) \in \hat{M} \cap \mathbb{Z}^{k}$ and $\nu \in \mathbb{C}$ the elementary representation $\pi^{\sigma, \nu}$ is irreducible if and only if either $\nu \notin \mathbb{Z}$ or

$$
\nu \in\left\{0, \pm 1, \ldots, \pm\left|n_{k}\right|, \pm\left(n_{k-1}+1\right), \pm\left(n_{k-2}+2\right), \ldots, \pm\left(n_{1}+k-1\right)\right\}
$$

For $\sigma \in \hat{M} \cap\left(\frac{1}{2}+\mathbb{Z}\right)^{k}$ and $\nu \in \mathbb{C}$ the representation $\pi^{\sigma, \nu}$ is irreducible if and only if either $\nu \notin\left(\frac{1}{2}+\mathbb{Z}\right)$ or

$$
\nu \in\left\{ \pm \frac{1}{2}, \ldots, \pm\left|n_{k}\right|, \pm\left(n_{k-1}+1\right), \pm\left(n_{k-2}+2\right), \ldots, \pm\left(n_{1}+k-1\right)\right\}
$$

If the elementary representation $\pi^{\sigma, \nu}$ is reducible, it always has two irreducible subquotients which will be denoted by $\tau^{\sigma, \nu}$ and $\omega^{\sigma, \nu}$. The K-spectra of these representations consist of all $q=\left(m_{1}, \ldots, m_{k}\right) \in$ $\hat{K} \cap\left(n_{1}+\mathbb{Z}\right)^{k}$ that satisfy:
(i) If $n_{k-1}>\left|n_{k}\right|$ and $\nu \in\left\{ \pm\left(\left|n_{k}\right|+1\right), \pm\left(\left|n_{k}\right|+2\right), \ldots, \pm n_{k-1}\right\}$:
$\Gamma\left(\tau^{\sigma, \nu}\right): m_{1} \geq n_{1} \geq \cdots \geq m_{k-1} \geq n_{k-1}$ and $|\nu|-1 \geq m_{k} \geq\left|n_{k}\right|$,
$\Gamma\left(\omega^{\sigma, \nu}\right): m_{1} \geq n_{1} \geq \cdots \geq m_{k-1} \geq n_{k-1} \geq m_{k} \geq|\nu|$.
(ii) If $n_{j-1}>n_{j}$ for some $j \in\{2, \ldots, k-1\}$ and $\nu \in\left\{ \pm\left(n_{j}+k-j+1\right), \pm\left(n_{j}+k-j+2\right), \ldots, \pm\left(n_{j-1}+k-j\right)\right\}:$
$\Gamma\left(\tau^{\sigma, \nu}\right): m_{1} \geq n_{1} \geq \cdots \geq m_{j-1} \geq n_{j-1}$ and $|\nu|-k+j-1 \geq m_{j} \geq n_{j} \geq \cdots \geq m_{k} \geq\left|n_{k}\right|$,
$\Gamma\left(\omega^{\sigma, \nu}\right): m_{1} \geq n_{1} \geq \cdots \geq m_{j-1} \geq n_{j-1} \geq m_{j} \geq|\nu|-k+j$ and $n_{j} \geq m_{j+1} \geq \cdots \geq m_{k} \geq\left|n_{k}\right|$.
(iii) If $\nu \in\left\{ \pm\left(n_{1}+k\right), \pm\left(n_{1}+k+1\right), \ldots\right\}$:
$\Gamma\left(\tau^{\sigma, \nu}\right):|\nu|-k \geq m_{1} \geq n_{1} \geq \cdots \geq m_{k} \geq\left|n_{k}\right|$,
$\Gamma\left(\omega^{\sigma, \nu}\right): m_{1} \geq|\nu|-k+1$ and $n_{1} \geq m_{2} \geq n_{2} \geq \cdots \geq m_{k} \geq\left|n_{k}\right|$.

Similarly to the case of even $n=2 k$ we now write down the infinitesimal characters of reducible elementary representations $\pi^{\sigma, \nu}$ (and so of its irreducible subquotients $\tau^{\sigma, \nu}$ and $\omega^{\sigma, \nu}$ too). We know that the infinitesimal character of $\pi^{\sigma, \nu}$ is $\chi_{\Lambda(\sigma, \nu)}$, where

$$
\Lambda(\sigma, \nu)=\left(n_{1}+k-1, n_{2}+k-2, \ldots, n_{k-1}+1, n_{k}, \nu\right)
$$

Since $\nu \in \frac{1}{2} \mathbb{Z} \subset \mathbb{R}=\mathfrak{a}_{0}^{*}$ we have $\Lambda(\sigma, \nu) \in i t_{0}^{*} \oplus \mathfrak{a}_{0}^{*}=\mathbb{R}^{k+1}$. We choose positive Weyl chamber in \mathbb{R}^{k+1}

$$
D=\left\{\lambda \in \mathbb{R}^{k+1} ; \lambda_{1}>\lambda_{2}>\cdots>\lambda_{k}>\left|\lambda_{k+1}\right|>0\right\}
$$

and again denote by $\lambda(\sigma, \nu)$ the unique point of $W \Lambda(\sigma, \nu) \cap \bar{D}$. We now write down $\lambda(\sigma, \nu)$ for all reducible elementary representations $\pi^{\sigma, \nu}$. In the following for $\sigma=\left(n_{1}, \ldots, n_{k}\right) \in \hat{M}$ we write $-\sigma$ for its contragredient class in $\hat{M}:-\sigma=\left(n_{1}, \ldots, n_{k-1},-n_{k}\right)$. Without loss of generality we can suppose that $\nu \geq 0$ because $\pi^{\sigma, \nu}$ and $\pi^{-\sigma,-\nu}$ have equivalent irreducible subquotients and because $\Lambda(\sigma, \nu)$ is W-conjugated with $\Lambda(-\sigma,-\nu)$: multiplying the last two coordinates by -1 .

If $n_{k-1}>\left|n_{k}\right|$ and $\nu \in\left\{\left|n_{k}\right|+1,\left|n_{k}\right|+2, \ldots, n_{k-1}\right\}$,

$$
\lambda(\sigma, \nu)=\left(n_{1}+k-1, n_{2}+k-2, \ldots, n_{k-1}+1, \nu, n_{k}\right)
$$

If $2 \leq j \leq k-1, n_{j-1}>n_{j}$ and $\nu \in\left\{n_{j}+k-j+1, \ldots, n_{j-1}+k-j\right\}$,
$\lambda(\sigma, \nu)=\left(n_{1}+k-1, \ldots, n_{j-1}+k-j+1, \nu, n_{j}+k-j, \ldots, n_{k-1}+1, n_{k}\right)$.
If $\nu \in\left\{n_{1}+k, n_{1}+k+1, \ldots\right\}$,

$$
\lambda(\sigma, \nu)=\left(\nu, n_{1}+k-1, \ldots, n_{k-1}+1, n_{k}\right)
$$

Similarly to the case of even n we see that now every reducible elementary representation has infinitesimal character χ_{λ} with $\lambda \in \Lambda$, where

$$
\Lambda=\left\{\lambda \in \mathbb{Z}^{k+1} \cup\left(\frac{1}{2}+\mathbb{Z}\right)^{k+1} ; \lambda_{1}>\lambda_{2}>\cdots>\lambda_{k}>\left|\lambda_{k+1}\right|\right\}
$$

We again write Λ as the disjoint union $\Lambda=\Lambda^{*} \cup \Lambda^{0}$, where

$$
\begin{aligned}
\Lambda^{*} & =\left\{\lambda \in \mathbb{Z}^{k+1} \cup\left(\frac{1}{2}+\mathbb{Z}\right)^{k+1} ; \lambda_{1}>\lambda_{2}>\cdots>\lambda_{k}>\left|\lambda_{k+1}\right|>0\right\} \\
\Lambda^{0} & =\left\{\lambda \in \mathbb{Z}_{+}^{k+1} ; \lambda_{1}>\lambda_{2}>\cdots>\lambda_{k}>0, \lambda_{k+1}=0\right\}
\end{aligned}
$$

As shown in [7] we have

Theorem 3. (i) For every $\lambda \in \Lambda^{*}$ there exist $k+1$ ordered pairs (σ, ν), $\sigma=\left(n_{1}, \ldots, n_{k}\right) \in \hat{M}, \nu \geq 0$, such that χ_{λ} is the infinitesimal character of $\pi^{\sigma, \nu}$. These are $\left(\sigma_{j}, \nu_{j}\right)$, where $\nu_{j}=\lambda_{j}$ for $1 \leq j \leq k, \nu_{k+1}=\left|\lambda_{k+1}\right|$ and

$$
\begin{aligned}
& \sigma_{1}=\left(\lambda_{2}-k+1, \lambda_{3}-k+2, \ldots, \lambda_{k}-1, \lambda_{k+1}\right) \\
& \sigma_{j}=\left(\lambda_{1}-k+1, \ldots, \lambda_{j-1}-k+j-1, \lambda_{j+1}-k+j, \ldots, \lambda_{k}-1, \lambda_{k+1}\right), \\
& 2 \leq j \leq k-1, \\
& \sigma_{k}=\left(\lambda_{1}-k+1, \lambda_{2}-k+2, \ldots, \lambda_{k-1}-1, \lambda_{k+1}\right), \\
& \sigma_{k+1}= \begin{cases}\left(\lambda_{1}-k+1, \lambda_{2}-k+2, \ldots, \lambda_{k-1}-1, \lambda_{k}\right) & \text { if } \lambda_{k+1}>0, \\
\left(\lambda_{1}-k+1, \lambda_{2}-k+2, \ldots, \lambda_{k-1}-1,-\lambda_{k}\right) & \text { if } \lambda_{k+1}<0,\end{cases} \\
& \pi^{\sigma_{j}, \nu_{j}}, 1 \leq j \leq k, \text { are reducible, while } \pi^{\sigma_{k+1}, \nu_{k+1}} \text { is irreducible. }
\end{aligned}
$$

(ii) For $\lambda \in \Lambda^{0}$ there exist $k+2$ ordered pairs $(\sigma, \nu), \sigma=\left(n_{1}, \ldots, n_{k}\right) \in$ $\hat{M}, \nu \geq 0$, such that χ_{λ} is the infinitesimal character of $\pi^{\sigma, \nu}$. These are the $\left(\sigma_{j}, \nu_{j}\right)$, where $\nu_{j}=\lambda_{j}$ for $1 \leq j \leq k, \nu_{k+1}=\nu_{k+2}=0$ and

$$
\begin{aligned}
\sigma_{1}= & \left(\lambda_{2}-k+1, \lambda_{3}-k+2, \ldots, \lambda_{k}-1,0\right) \\
\sigma_{j}= & \left(\lambda_{1}-k+1, \ldots, \lambda_{j-1}-k+j-1, \lambda_{j+1}-k+j, \ldots, \lambda_{k}-1,0\right), \\
& 2 \leq j \leq k-1, \\
\sigma_{k}= & \left(\lambda_{1}-k+1, \lambda_{2}-k+2, \ldots, \lambda_{k-1}-1,0\right), \\
\sigma_{k+1}= & \left(\lambda_{1}-k+1, \lambda_{2}-k+2, \ldots, \lambda_{k-1}-1, \lambda_{k}\right), \\
\sigma_{k+2}= & \left(\lambda_{1}-k+1, \lambda_{2}-k+2, \ldots, \lambda_{k-1}-1,-\lambda_{k}\right) .
\end{aligned}
$$

$\pi^{\sigma_{j}, \nu_{j}}, 1 \leq j \leq k$, are reducible, while $\pi^{\sigma_{k+1}, 0}$ and $\pi^{\sigma_{k+2}, 0}$ are irreducible.

We note that in fact the representations $\pi^{\sigma_{k+1}, 0}$ and $\pi^{\sigma_{k+2}, 0}$ are equivalent, but this is unimportant for studying and parametrizing \widehat{G}^{0} and \hat{G}^{0}.

Fix $\lambda \in \Lambda$. By Theorem 3. there exist k ordered pairs $(\sigma, \nu), \sigma \in \hat{M}$, $\nu \geq 0$, with reducible $\pi^{\sigma, \nu}$ having χ_{λ} as the infinitesimal character. There are $k+1$ mutually inequivalent irreducible subquotients of these elementary representations; we denote them $\tau_{1}^{\lambda}, \ldots, \tau_{k}^{\lambda}, \omega^{\lambda}: \tau_{j}^{\lambda}=\tau^{\sigma_{j}, \nu_{j}}$, $1 \leq j \leq k, \omega^{\lambda}=\omega^{\sigma_{k}, \nu_{k}}$. Note that $\omega^{\sigma_{j}, \nu_{j}} \cong \tau_{j+1}^{\lambda}$ for $1 \leq j \leq k-1$. Their
K-spectra consist of all $q=\left(m_{1}, \ldots, m_{k}\right) \in \hat{K} \cap\left(n_{1}+\mathbb{Z}\right)^{k}$ satisfying:

$$
\begin{array}{ll}
\Gamma\left(\tau_{1}^{\lambda}\right): & \lambda_{1}-k \geq m_{1} \geq \lambda_{2}-k+1 \geq m_{2} \geq \cdots \geq \lambda_{k}-1 \geq m_{k} \geq\left|\lambda_{k+1}\right| . \\
\Gamma\left(\tau_{j}^{\lambda}\right): & m_{1} \geq \lambda_{1}-k+1 \geq \cdots \geq m_{j-1} \geq \lambda_{j-1}-k+j-1 \text { and } \\
& \lambda_{j}-k+j-1 \geq m_{j} \geq \cdots \geq \lambda_{k}-1 \geq m_{k} \geq\left|\lambda_{k+1}\right| \\
& \text { for } 2 \leq j \leq k . \\
\Gamma\left(\omega^{\lambda}\right): & m_{1} \geq \lambda_{1}-k+1 \geq \cdots \geq m_{k-1} \geq \lambda_{k-1}-1 \geq m_{k} \geq \lambda_{k} .
\end{array}
$$

The definitions of corners and fundamental corners do not have sense when rank $\mathfrak{k}<\operatorname{rank} \mathfrak{g}$. Consider the Vogan's minimal K-types. Note that now

$$
\left\|q+2 \rho_{K}\right\|^{2}=\left(m_{1}+2 k-1\right)^{2}+\left(m_{2}+2 k-3\right)^{2}+\cdots+\left(m_{k}+1\right)^{2}
$$

so every $\pi \in \widehat{G}^{0}$ has unique minimal K-type that will be denoted by $q^{V}(\pi)$: this is the element $\left(m_{1}, \ldots, m_{k}\right) \in \Gamma(\pi)$ whose every coordinate m_{j} is the smallest possible.

Theorem 4. The map $\pi \mapsto q^{V}(\pi)$ is a surjection of \widehat{G}^{0} onto \hat{K}. More precisely, for every $q=\left(m_{1}, \ldots, m_{k}\right) \in \hat{K}$:
(a) There exist infinitely many λ 's in Λ such that $q^{V}\left(\tau_{1}^{\lambda}\right)=q$.
(b) Let $j \in\{2, \ldots, k\}$. The number of λ 's in Λ such that $q^{V}\left(\tau_{j}^{\lambda}\right)=q$ is:

$$
\begin{array}{ll}
0 & \text { if } m_{j-1}=m_{j} \\
m_{j-1}-m_{j} & \text { if } m_{j-1}>m_{j} \text { and } m_{k}=0 \\
2\left(m_{j-1}-m_{j}\right) & \text { if } m_{j-1}>m_{j} \text { and } m_{k}>0 .
\end{array}
$$

(c) The number of λ 's in Λ such that $q^{V}\left(\omega^{\lambda}\right)=q$ is:

$$
\begin{array}{ll}
0 & \text { if } m_{k}<1 \\
1 & \text { if } m_{k}=1 \\
2\left\lfloor m_{k}-\frac{1}{2}\right\rfloor & \text { if } m_{k}>1
\end{array}
$$

Proof. (a) These are all $\lambda \in \Lambda$ such that
$\lambda_{1} \in\left(m_{1}+k+\mathbb{Z}_{+}\right), \quad \lambda_{j}=m_{j-1}+k-j+12 \leq j \leq k, \quad \lambda_{k+1}= \pm m_{k}$.
(b) These are all $\lambda \in \Lambda$ such that $\lambda_{s}=m_{s}+k-s$ for $1 \leq s \leq j-1$, $\lambda_{s}=m_{s-1}+k-s+1$ for $j+1 \leq s \leq k, \lambda_{j-1}>\lambda_{j}>\lambda_{j+1}$ and $\lambda_{k+1}= \pm m_{k}$.
(c) These are all $\lambda \in \Lambda$ such that

$$
\lambda_{s}=m_{s}+k-s, \quad 1 \leq s \leq k,\left|\lambda_{k+1}\right|<m_{k} .
$$

We now parametrize \hat{G}^{0}. A class in \widehat{G}^{0} is unitary if and only if it is an irreducible subquotient of an end of complementary series. For $\sigma \in \hat{M}$ the complementary series is nonempty if and only if σ is selfcontragredient, i.e. $\sigma=\left(n_{1}, \ldots, n_{k-1}, 0\right)$. In this case we set $\nu(\sigma)=\min \{\nu \geq$ $0 ; \pi^{\sigma, \nu}$ is reducible $\}$. From the necessary and sufficient conditions for reducibility of elementary representations we find:
(i) If $n_{1}=\cdots=n_{k-1}=0$, i.e. if $\sigma=\sigma_{0}=(0, \ldots, 0)$ is the trivial onedimensional representation of M, then $\nu\left(\sigma_{0}\right)=k$. In this case $\Gamma\left(\tau^{\sigma_{0}, k}\right)=\{(0, \ldots, 0)\}$ and $\Gamma\left(\omega^{\sigma_{0}, k}\right)=\{(s, 0, \ldots, 0) ; s \in \mathbb{N}\}$ and so $q^{V}\left(\tau^{\sigma_{0}, k}\right)=(0, \ldots, 0)$ and $q^{V}\left(\omega^{\sigma_{0}, k}\right)=(1,0, \ldots, 0)$.
(ii) If $n_{1}>0$, let $j \in\{2, \ldots, k\}$ be the smallest index such that $n_{j-1}>0$. Then $\nu(\sigma)=k-j+1$. The $K-$ spectra of irreducible subquotients of $\pi^{\sigma, k-j+1}$ are

$$
\begin{array}{ll}
\Gamma\left(\tau^{\sigma, k-j+1}\right): & m_{1} \geq n_{1} \geq \cdots \geq m_{j-1} \geq n_{j-1} \\
& \text { and } m_{s}=0 \forall s \geq j, \\
\Gamma\left(\omega^{\sigma, k-j+1}\right): & m_{1} \geq n_{1} \geq \cdots \geq m_{j-1} \geq n_{j-1} \geq m_{j} \geq 1 \\
& \text { and } \quad m_{s}=0 \forall s>j .
\end{array}
$$

So we have

$$
\begin{aligned}
q^{V}\left(\tau^{\sigma, k-j+1}\right) & =\left(n_{1}, \ldots, n_{j-1}, 0, \ldots, 0\right), \\
q^{V}\left(\omega^{\sigma, k-j+1}\right) & =\left(n_{1}, \ldots, n_{j-1}, 1,0, \ldots, 0\right) .
\end{aligned}
$$

Thus, we have proved
Theorem 5. The map $\pi \mapsto q^{V}(\pi)$ is a bijection of \hat{G}^{0} onto

$$
\hat{K}_{0}=\left\{q=\left(m_{1}, \ldots, m_{k}\right) \in \hat{K} ; m_{k}=0\right\} .
$$

Acknowledgements. The authors were supported by the QuantiXLie Centre of Excellence, a project cofinanced by the Croatian Government and European Union through the European Regional Development Fund-the Competitiveness and Cohesion Operational Programme (Grant KK.01.1.1.01.0004).

References

[1] A. M. Gavrilik and A. U. Klimyk, Irreducible and indecomposable representations of the algebras $\mathfrak{s o}(n, 1)$ and $\mathfrak{i s o (n) \text { , (in Russian) }}$ Preprint ITP-73-153R, Kiev, 1975.
[2] A. M. Gavrilik and A. U. Klimyk, Analysis of the representations of the Lorents and Euclidean groups of $n-t h$ order, Preprint ITP-75-18E, Kiev, 1975.
[3] A. Guichardet, Représentations des groupes $\mathrm{SO}_{0}(n, 1)$, unpublished manuscript 1976.
[4] T. Hirai, On infinitesimal operators of irreducible representations of the Lorentz group of $n-t h$ order, Proc. Japan Acad. Ser. A Math. Sci. 38 (1962), $83-87$.
[5] T. Hirai, On irreducible representations of the Lorentz group of $n-t h$ order, Proc. Japan Acad. Ser. A Math. Sci. 38 (1962), 258 - 262.
[6] A. U. Klimyk and A. M. Gavrilik, Representations matrix elements and Clebsch-Gordan coefficients of the semisimple Lie groups, J. Math. Phys. 20 (1979), 1624 - 1642.
[7] D. Kovačević and H. Kraljević, Corners and fundamental corners for the groups $\operatorname{Spin}(n, 1$,$) , arXiv:2009.02541 [math.RT].$
[8] H. Kraljević, On representations of the group $\mathrm{SU}(n, 1)$, Trans. Amer. Math. Soc. 221 (1976), $433-448$.
[9] U. Ottoson, A classification of the unitary irreducible representations of $\mathrm{SO}_{0}(N, 1)$, Comm. Math. Phys. 8 (1968), $228-244$.
[10] D. P. Zhelobenko, Description of quasisimple irreducible representations of the groups $\mathrm{U}(n, 1), \operatorname{Spin}(n, 1)$ (in Russian), Izvestia Akademii nauk SSSR, Seria matematiceskaia 41 (1977), 34-53.

[^0]E-mail address: hrvoje.kraljevic@math.hr

[^0]: Domagoj Kovačević
 University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia
 E-mail address: domagoj.kovacevic@fer.hr
 Hrvoje Kraljević
 University of Zagreb, Faculty of Science, Department of
 Mathemamatics, Bijenička cesta 30, 10000 , Croatia

